Refactoring To Patterns

version 1.13

mmdustral loGic

Joshua K erievsky
joshua@industrialogic.com
Industrial Logic, Inc.
http://industriallogic.com

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Table of Contents

L gLl [H et i) o ISR 5
Chain CONSIIUCLONS* ... 6
YL E Y 2= L1 0 o TR 7
LT o oS 7
0 =T 0 1101 = TP 7
Replace Multiple Constructors with Creation Methods*o
0T Y= 4 T o TP 9
=T o] g = 1 o 10
EXAIMPIE et 10
Parameterized Creation Methods ... 13
Encapsulate Subclasses with Creation Methods* ... 15
IMIOTIVALION .ottt nns 15
IMBCRNANICS 1.ttt nnes 16
EXAMPIE Rttt 16
Extract Creation Class* ... 18
IMOTIVALTON <.ttt bbbttt bbb s bbb s s 18
IMIBCRNANICS 1.ttt 19
EXAIMPIE ettt bbbttt et et b bbbttt et b s s 19
Replace Conditional Calculationswith Strategy* ... 2
IMIOTIVALION .ottt 23
MECRANICS ...ttt st bbbt b s s s 23
EXAIMPIE ettt bbbttt et ettt bt bbb s s 24
Replace Implicit Tree with Composite* ..o 31
IMIOTIVALION .ottt st 31
IMIBCRNANICS 1.ttt nns 32
EXAIMIPIE Rt 32
Encapsulate Composite with Builder** ... 5
IMOTIVALTON <.ttt b bttt bbbt b et b s 35
MECRANICS ..ottt b bbbt s 36
EXAIMPIE ettt ettt bbb bbbttt et b 36
EXteNded EXAMPIE ... 38

Page 2 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Extract Special-Case Logic into Decorators.........o... a1
IMIOTIVATION .ottt et nns 42
=T o] g = 1 oS TTT 43
0 =T 0 110] = TP 43

Replace Hard-Coded Notifications with Observer* ... 50
o) Y= 4 T 1 o TSR 51
MECRANICS ...ttt bbbt bbbt b s 52
=T 0 110] = TP 52

Move Accumulation to Collecting Parameter~ ... 55
oY Y= 4 T o TP 55
=T o] g = 1 o 56
EXAIMPIE ARt 56
EXAMPIE 2.ttt 59

Replace One/Many Distinctions with Composite........ 60
IMOTIVALTON <.ttt bbbt b s bbb s bbb s s 60
IMECRNANICS 1.ttt nnas 61
EXAMPIE Rt 61

CompPoSE MEtNOO* ™ ... 62
IMOTIVALTON <.ttt bbbt sttt bbbt b s s s 62
MECRANICS ...ttt bbbt bbb s bbb s 63
EXAMPIE Lottt bbb bbbttt b bbbttt es e 64
EXAIMPIE 2.t 67
EXAMPIE 3Rt 73

Separate Versionswith Adapters™* ... 75
IMOTIVALTON <.ttt bbbt sttt bbbt s s 76
IMBCRNANICS 1.ttt 76
EXAIMPIE .ottt bbbttt bttt bbbttt b et s 77
Adapting LEJACY SYSTEMIS ...t 82

Adapt INLEITaCE........oeeee 83
IMOTIVALTON <.ttt bbbttt s bt sess e 83
IMBCRNANICS 1.ttt nnes 84
EXAIMPIE .ottt ettt ettt ettt b bbbt ettt s 84

REFEIEINCES ..ot e b et b bt h e Rt h R Rt Rt R R R n s 86

L600] ol 1 1= o o [PPSR P SR PR 87

Page 3 of 87

Refactoring To

Acknowledgements.

Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 4 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

| ntroduction

I’ve yet to write a formal introduction to this work. At present, I’ ve written more than a dozen
refactorings and have many more in the works. My goal in writing thisisto help you learn how to

refactor to Patterns when appropriate and away from Patterns when something simpler is
discovered

use Patterns to communicate intention

know and continueto learn alarge body of Patterns

understand how to implement Patterns in simple and sophisticated ways
use Patterns to clean, condense, clarify and simplify code

evolve designs

An additional goal | haveisto fill agap, first noted by my friend Martin Fowler in hisclassic
work: Refactoring: Improving The Design Of Existing Code:

Many of the refactorings, such as Replace Type Code with Sate/Strtaegy (227)
and Form Template Method (345) are about introducing patterns into a system.
As the essential Gang of Four book says, “Design Patterns...provide targets for
your refactorings.” Thereis a natura relation between patterns and refactorings.
Patterns are where you want to be; refactorings are ways to get there from
somewhere else. | don't have refactorings for al known patterns in this book,
not even for al the Gang of Four paiterns. This is another aspect of the
incompleteness of this catalog. | hope someday the gap will be closed.

Theform | am using in thiswork is nearly identical to the one used by Martin in his Refactoring
book. | have added the following to this form:

Zero, one or two asterisks beside the name of every refactoring. Zero asterisks mean |
don’t use the refactoring very often, one asterisk means | use it sometimes, and two
asterisks mean | use it quite often.

A section on Communication, Duplication and Simplicity

Numbered steps in the Mechanics section that correspond to numbered steps in the
Examples section.

Thisis acontinuously evolving piece of work. Y our feedback is welcome — please send thoughts,
comments or guestions to joshua@industriallogic.com. This work lives on the internet at the
following address: http://industriall ogic.com/xp/refactoring/

There is also an email list — called refactoring@yahoogroup.com — which is a good place to
discuss refactoring, refactoring to patterns and emerging tools and IDEs that enable automated
refactorings.

Page 5 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Chain Constructor s*

Y ou have multiple constructors
that contain duplicate code

Chain the constructors together
to obtain the least duplicate code

public class Loan {

public Loan(float notional, float outstanding, int rating, Date expiry) {
this.strategy = new TermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating =rating;
this.expiry = expiry;

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new RevolvingTermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

public Loan(CapitalStrategy strategy, float notional, float outstanding,
int rating, Date expiry, Date maturity) {

this.strategy = strategy;

this.notional = notional;

this.outstanding = outstanding;

this.rating = rating;

this.expiry = expiry;

this.maturity = maturity;

2

public class Loan {

public Loan(float notional, float outstanding, int rating, Date expiry) {
this(new TermROC(), notional, outstanding, rating, expiry, null);

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);

public Loan(CapitalStrategy strategy, float notional, float outstanding,
int rating, Date expiry, Date maturity) {

this.strategy = strategy;

this.notional = notional;

this.outstanding = outstanding;

this.rating = rating;

this.expiry = expiry;

this.maturity = maturity;

Page 6 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

Code that’ s duplicated across two or more of a class's constructorsis an invitation for trouble.
Someone adds a new variable to a class, updates a constructor to initialize the variable, but
neglects to update the other constructors, and bang, say hello to your next bug. The more
constructors you have in a class, the more duplication will hurt you. It's therefore a good idea to
reduce or remove all duplication if possible, which has the added bonus of reducing your
system’s code bloat.

We often accomplish this refactoring with constructor chaining: specific constructors call
more general-purpose constructors until a final constructor is reached. If you have one
constructor at the end of every chain, | call that your catch-all constructor, since it handles every
constructor cal. This catch-all constructor often accepts more parameters than the other
constructors, and may or may not be private or protected.

If you find that having many constructors on your class detracts from its usability, consider
applying Replace Multiple Constructors with Creation Methods* (9).

Communication Duplication Simplicity
When constructors in a class Duplicate code in your If more than one constructor
implement duplicate work, the constructors makes your classes | contains the same code, it's
code fails to communicate what more error-prone and harder to harder to see how each
is specific from what is general. maintain. Find what is common, | constructor is different. Simplify
Communicate this by having place it in general-purpose your constructors by making
specific constructors forward constructors, forward calls to specific ones call more general
calls to more general-purpose these general constructors and purpose ones, in a chain.
constructors and do unique work | implement what isn’'t general in
in each constructor. each constructor.

Mechanics

1. Find two constructors (called A and B) that contain duplicate code. Determine if A
cancal B or if B can call A, such that the duplicate code can be safely (and hopefully
easily) deleted from one of the two constructors.

2. Compile and test.

3. Repeat steps 1 and 2 for al constructors in the class, including ones you' ve already
touched, in order to obtain as little duplication across al constructors as possible.

4. Changethe visihility of any constructors that may not need to be public.
5. Compile and test.
Example

1. We'll go with the example shown in the code sketch. We start with a single Loan class, which
has three constructors to represent different types of loans and tons of bloated and ugly
duplication:

public Loan(float notional, float outstanding, int rating, Date expiry) {
this.strategy = new Ter nROC() ;
this.notional = notional;
thi s. out standi ng = out st andi ng;
this.rating = rating;
this.expiry = expiry;

Page 7 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new Revol vi ngTer nROC() ;
this.notional = notional;
t hi s. out st andi ng = out st andi ng;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

public Loan(Capital Strategy strategy, float notional, float outstanding, int rating,
Date expiry, Date maturity) {

this.strategy = strategy;

this.notional = notional;

thi s. out standi ng = out st andi ng;

this.rating = rating;

this.expiry = expiry;

this.maturity = maturity;

}

| study the first two constructors. They do contain duplicate code, but so does that third
constructor. | consider which constructor it would be easier for the first constructor to call. | see
that it could call the third constructor, with a minimum about of work. So | change the first
constructor to be:

public Loan(float notional, float outstanding, int rating, Date expiry) {
thi s(new TernmROC(), notional, outstanding, rating, expiry, null);
}

2. | compile and test to see that the change works.

3. | repeat steps 1 and 2, to remove as much duplication as possible. This leads me to the second
constructor. It appears that it too can call the third constructor, as follows:

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
t hi s(new Revol vi ngTernROC(), notional, outstanding, rating, expiry, maturity);
}

I’m now aware that constructor threeis my class's catch-all constructor, sinceit handles al of the
construction details.

4. | check all calers of the three constructors to determine if | can change the public visibility of
any of them. In this case, | can't (take my word for it — you can't see the code that calls these
methods).

5. | compile and test to compl ete the refactoring.

Page 8 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace M ultiple Constructorswith Creation M ethods*

Many constructors on a class make it hard to decide
which constructor to call during devel opment

Replace the constructors with intention-revealing
Creation Methods that return object instances

Loan

+Loan(notional, outstanding, customerRating, expiry)

+Loan(notional, outstanding, customerRating, expiry, maturity)
+Loan(capitalStrategy, outstanding, customerRating, expiry, maturity)
+Loan(type, capitalStrategy, outstanding, customerRating, expiry)
+Loan(type, capitalStrategy, outstanding, customerRating, expiry, maturity)

v

Loan

#Loan(type, capitalStrategy, notional, outstanding, customerRating, expiry, maturity)
+newTermloan(notional, outstanding, customerRating, expiry) : Loan

+newTermlLoanWithStrategy(capitalStrategy, notional, outstanding, customerRating, expiry) : Loan
+newRevolver(notional, outstanding, customerRating, expiry) : Loan
+newRevolverWithStrategy(capitalStrategy, notional. outstanding. customerRating. expiry) : Loan

+newRCTL(notional. outstanding. customerRating, expiry, maturity) : Loan
+newRCTLWithStrategy(capitalStrategy, notional, outstanding, customerRating, expiry, maturity) : Loan

Motivation

Some languages allow you to hame your constructors any old way you like, regardless of the
name of your class. Other languages, such as C++ and Java, don't allow this. each of your
constructors must be named after your class name. If you have only one constructor, thisisn't a
problem. But if you have multiple constructors, programmers will have to choose which
constructor to call by studying which parameters are expected and/or poking around at the
constructor code. What's so wrong with that? A lot. Multiple constructors simply don’t
communicate intention efficiently or effectively. The more constructors you have, the easier it is
for programmers to mistakenly choose the wrong one. Having to choose which constructor to
call dows down development and the code that does make the call to one of the many
constructors often fails to sufficiently communicate the nature of the object being constructed.

If you think that sounds bad, it gets worse. As systems mature, programmers often add more
and more constructors to classes without checking to seeif older constructors are still being used.
Constructors that continue to live in a class when they aren’t being used are dead weight, serving
only to bloat the class and make it more complicated than it needs to be. Mature software
systems are often filled with dead constructor code because programmers lack fast, easy ways to
identify all callersto specific constructors: either their IDE doesn’t help them with this or it istoo
much trouble to devise and execute search expressions that will identify the exact callers of a
specific method. On the other hand, if the majority of object creation calls come through
specificaly-named methods, like creat eTer mLoan() and creat eRevol ver (), it is fairly
trivial to find all callers to such explicitly-named methods.

Now, what does our industry call a method that creates objects? Many would answer
“Factory Method,” after the name given to a creational pattern in the classic book, Design Pattern

Page 9 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

[GoF]. But are al methods that create objects true Factory Methods? Given a broad definition of
the term — i.e. a method that simply creates objects — the answer would be an emphatic “yes!”
But given the way the authors of the creational pattern, Factory Method, wrote about it (in 1994),
it is clear that not every method that creates objects offers the kind of loose-coupling provided by
a genuine Factory Method. So, to help us all be clearer when discussing designs or refactorings
related to object creation, I'm using the term Creation Method to refer to a method that creates
objects. This means that every Factory Method is a Creation Method but not necessarily the
reverse. It also means that you can substitute the term Creation Method wherever Martin Fowler
or Joshua Bloch use the term Factory Method in their excellent books, Refactoring [Fowler] and
Effective Java [Bloch], respectively.

Communication Duplication Simplicity
Copious constructors don’t There is no direct duplication Figuring out which constructor to
communicate available types here; just many nearly identical- | call isn't simple — make it simple
very well — communicate type looking constructors by offering up the various types
availability clearly by offering through intention-revealing
access to instances via intention- Creation Methods.
revealing Creation Methods

Mechanics

1. Identify the class that has copious constructors. These constructors will often have
abundant parameters, which further confuses devel opers when they want to choose which
constructor to call to obtain an instance.

2. ldentify the catch-all constructor or create one using Chain Constructors (6). If your
catch-all constructor is public, make it private or protected.

3. For every type of object that can be created using one of the many constructors, create an
intention-revealing Creation Method. Test that each Creation Method returns the correct
type of object and confirm that each Creation Method is caled by some client code (if
there is no user of the Creation Method, remove it until thereis aneed for it).

4. Replace dl callsto constructors with calls to the appropriate Creation Methods. This can
take some work but will result in easier-to-read client code.

Example

1. I'll use the example shown in the code sketch. We start with a single Loan class, which has
copious constructors to represent some form of a Term Loan, Revolver or RCTL (a Revolver and
Term Loan combination).

public class Loan {
private static String TERM LOAN = “TL";
private static String REVOLVER = “RC’;
private static String RCTL = “RCTL";
private String type;
private Capital Strategy strategy;
private float notional;
private float outstanding;
private int custonerRating;
private Date maturity;
private Date expiry;

public Loan(float notional, float outstanding, int custonerRating, Date expiry) {
t hi s(TERM_LOAN, new Ter nROC(), notional, outstanding,
custonerRating, expiry, null);

public Loan(float notional, float outstanding, int custonerRating, Date expiry,

Page 10 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Date maturity) {
t hi s(RCTL, new Revol vi ngTernROC(), notional, outstanding, customerRating,
expiry, maturity);

public Loan(Capital Strategy strategy, float notional, float outstanding,
int custonerRating, Date expiry, Date maturity) {
t hi s(RCTL, strategy, notional, outstanding, custonerRating,
expiry, maturity);

}
public Loan(String type, Capital Strategy strategy, float notional,
float outstanding, int custonerRating, Date expiry) {
this(type, strategy, notional, outstanding, customerRating, expiry, null);

}
public Loan(String type, Capital Strategy strategy, float notional,
float outstanding, int customerRating, Date expiry, Date maturity) {
this.type = type;
this.strategy = strategy;
this.notional = notional;
t hi s. out st andi ng = out st andi ng;
t hi s. customerRati ng = custoner Rati ng;
this.expiry = expiry;
if (RCTL.equal s(type))
this.maturity = maturity;

There are five constructors, the last of which is the catch-all constructor. If you look at these
constructors, it isn’t easy to know which ones create Term Loans, which ones create Revolvers,
and which ones create RCTLs. | happen to know that an RCTL needs both an expiry date and a
maturity date; so to create one, | must call a constructor that lets me pass in both dates. But do
other programmers who will use this code know this? If they don’t, will the constructors
communicate sufficiently when I’'m not around? Well, they will probably be able to figure it out,
with alittlework. But they shouldn’t have to work at all to obtain the type of Loan they need.

Before we continue with the refactoring, | want to know what other assumptions are made in
the above constructors. There is a major one; if you call the first constructor you will get back a
Term Loan, not a Revolver. If you want a Revolver instance, you have to call one of the last two
constructors, which lets you passin a Loan type. Hmmm, | wonder if al users of this code will
know this? Or will they have to learn by encountering some ugly bugs?

2. Our next task isto identify the catch-all constructor for the Loan class. Thisiseasy — it isthe
constructor that takes the most parameters:

public Loan(String type, Capital Strategy strategy, float notional, float outstanding,
int custonmerRating, Date expiry, Date maturity) {
this.type = type;
this.strategy = strategy;
this notional = notional;
thi s. out standi ng = out st andi ng;
this.customerRati ng = custoner Rati ng;
this.expiry = expiry;
if (RCTL. equal s(type)
this.maturity = maturity;

}
I make this constructor protected:

protected Loan(String type, Capital Strategy strategy, float notional, float outstanding,
int custonerRating, Date expiry, Date maturity)

3. Next, | must identify the types of objects that may be created using one of the many Loan
constructors. Inthiscase | identify the following types:

e aTerm Loan with default capital strategy
* aTerm Loan with custom capital strategy
* aRevolver with default capital strategy

Page 11 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

» aRevolver with custom capital strategy
* an RCTL with default capital strategy
» an RCTL with custom capital strategy

| begin by writing a test for a new Creation Method that will return a Term Loan with a default
Term Loan capital strategy:

public void testTernmLoan() {
String custRating = 2;
Date expiry = createDate(2001, Cal endar. NOVEMBER, 20);
Loan | oan = Loan. newTer mLoan(1000f, 250f, CUSTOVER RATI NG expiry);
assert Not Nul | (1 oan);
assert Equal s(Loan. TERM LOAN, | oan. get Type());

Thistest doesn’t compile, run or pass until | add the following static method to the Loan class:

public class Loan...
static Loan newTernLoan(fl oat notional, float outstanding, int customerRating,
Date expiry) {
return new Loan(TERM LOAN, new Ter nROC(), notional, outstanding,
custonerRating, expiry, null);

}

Notice how this method delegates to the protected catch-all constructor identified in step 1.

| will create five similar tests and five additional intention-revealing Creation Methods for the
remaining object types. Asthiswork is done, the public Loan constructors are diminated a little
at atime. Here'swhat the refactored L oan class looks like:

public class Loan {
private static String TERM LOAN = “TL";
private static String REVOLVER = “RC’;
private static String RCTL = “RCTL";
private String type;
private Capital Strategy strategy;
private float notional;
private float outstanding;
private int custonerRating;
private Date maturity;
private Date expiry;

protected Loan(String type, Capital Strategy strategy, float notional,
fl oat outstanding, int custonmerRating, Date expiry, Date maturity) {
this.type = type;
this.strategy = strategy;
this notional = notional;
thi s. out standi ng = out st andi ng;
t his. custonerRating = custonerRating;
this.expiry = expiry;
if (RCTL. equal s(type)
this.maturity = maturity;

static Loan newTernmLoan(fl oat notional, float outstanding, int customerRating,
Date expiry) {
return new Loan(TERM LOAN, new Ter nROC(), notional, outstanding, custonerRating,
expiry, null);

static Loan newlTermWthStrategy(Capital Strategy strategy, float notional,
fl oat outstanding, int custonmerRating, Date expiry) {
return new Loan(TERM LQOAN, strategy, new TernROC(), notional, outstanding,
custonmerRating, expiry, null);

static Loan newRevol ver (float notional, float outstanding, int customerRating,
Date expiry) {
return new Loan(REVOLVER, new Revol ver ROC(), notional, outstanding,
custonerRating, expiry, null);

static Loan newRevol verWthStrategy(Capital Strategy strategy, float notional,
float outstanding, int custonmerRating, Date expiry) {

Page 12 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return new Loan(REVOLVER, strategy, new Revol ver ROC(), notional, outstanding,
custonerRating, expiry, null);

static Loan newRCTL(fl oat notional, float outstanding, int customerRating,
Date expiry, Date maturity) {
return new Loan(RCTL, new RCTLROC(), notional, outstanding,
custonerRating, expiry, maturity);

}
static Loan newRCTLWthStrategy(Capital Strategy strategy, float notional,
float outstanding, int custonerRating, Date expiry, Date maturity) {
return new Loan(RCTL, strategy, new Revol verROC(), notional, outstanding,
custonerRating, expiry, maturity);

Now it is quite clear how to obtain the kind of Loan instance you need — you simply look at
the available types and call the correct method. The new Creation Methods still take a fair
number of parameters. Introduce Parameter Object (295) [Fowler] is a refactoring that can help
you reduce the number of parameters you pass to methods.

Parameterized Creation Methods

Asyou consider implementing this refactoring on a class, you may calculate in your head that
you'd need something on the order of 50 Creation Methods to account for every aobject
configuration supported by your class. Since writing 50 methods doesn’t sound like much fun,
you may decide not to do this refactoring. However, there are ways to handle this situation. First,
you need not produce a Creation Method for every aobject configuration: you can write Creation
Methods for the most popular configurations and leave some public constructors around to handle
the rest of the cases. In addition, it often makes sense to use parameters to cut down on the
number of Creation Methods — we call these parameterized Creation Methods. For example, a
single Apple class could be instantiated in a variety of ways:

» based on the family of apple

» based on the appl€'s country of origin
» based on the color of apple

» with or without seeds

e peeled or not peeled

These options present numerous kinds of Apples, even though they aren’t defined as explicit
Apple subclasses. To obtain the Apple instance you need, you must call the correct Apple
constructor. But there can be many of these Apple constructors, corresponding with the many
Appletypes:

public Appl e(AppleFam |y famly, Color color) {
this(famly, color, Country.USA, true, false);

}
public Apple(AppleFam |y famly, Color color, Country country) {
this(famly, color, country, true, false);

}
public Appl e(Appl eFam |y fam |y, Color color, bool ean hasSeeds) {
this(famly, color, Country.USA, hasSeeds, false);

}
public Appl e(AppleFam |y famly, Color color, Country country, bool ean hasSeeds) {
this(famly, color, country, hasSeeds, false);

}
public Apple(AppleFanmily famly, Color color, Country country, bool ean hasSeeds, bool ean
i sPeel ed) {

this.famly = famly;

this.color = color;

this.country = country;

t hi s. hasSeeds = hasSeeds;

this.isPeel ed = isPeel ed;

Page 13 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

As we've noted before, al of these constructors make the Apple class harder to use. To
improve the usability of the Apple class, yet not write a large quantity of Creation Methods, we
could identify the most popular kinds of Apples created and simply make Creation Methods for
them:

public static Apple createSeedl essAneri canMaci nt osh();
public static Apple createSeedl essGannySnith();
public static Apple createSeededAsi anGol denDel i ci ous();

These Creation Methods would not altogether replace the public constructors, but would
supplement them and perhaps reduce their number. However, because the above Creation
Methods aren’t parameterized, they could easily multiple over time, yielding aforrest of Creation
Methods that would also make it hard to choose the kind of Apple someonen needed. Therefore,
when faced with so many possible combinations, it oftem makes sense to write parameterized
Creation Methods:

public static Apple createSeedl essMaci nt osh(Country c);
public static Apple createCol denDelicious(Country c);

Page 14 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Encapsulate Subclasses with Creation M ethods*

Subclasses implement a common interface
but are constructed in diverse ways

Encapsulate the subclasses with intention-revealing
Creation Methods in the base class

Loan

#Loan(...)

TermLoan Revolver RCTL

+TermLoan(...) +Revolver(...) +RCTL(...)
A A A

2

Loan < Client

Client

#Loan(...)
+newTermLoan(...) : Loan
+newRevolver(...) : Loan
+newRCTL(...) : Loan

TermLoan Revolver RCTL
#TermLoan(...) #Revolver(...) #RCTL(...)
Motivation

The motivation for doing this refactoring is to hide implementation details from those who
don’t need to know about them.

Consider a design in which you have numerous subclasses that implement a common
interface. You expect client code to communicate with these subclasses via the common
interface. But if you don't protect the subclass constructors, you make it possible for clients to
directly instantiate them. What's so wrong with that?

Here's what's wrong: once programmers write code that talks directly to a subclass type
rather than through its common interface, the door is open for changing the subclass interface in
response to the needs of client code. This happens quiet often on projects. Once it happens, the
altered subclass is different from the other subclasses and its base class: it has specia methods on
it that are only available via its interface and not the common interface. That may seem like no
big deal, but it leads to the creation of alot of special-case logic.

Page 15 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

I recently implemented this refactoring on a project where we had about 25 similar
subclasses, each of which had its own small collection of public constructors. Client code on that
system directly instantiated the various subclasses, and programmers would sometimes instantiate

the wrong subclass or the right subclass with the wrong constructor.

The refactoring

encapsulated the details and produced a single place to get awell-named subclass instance.

Communication

Duplication

Simplicity

If it is important that client code

common interface, it is important
to communicate this in your
code. Creating subclasses
doesn't communicate this very
well. Instead, create protected
subclass constructors and
Creation Methods that give
clients access to the various
subclass types.

Duplication isn't an issue with
talk with subclass instances via a | this refactoring.

Figuring out which subclass to
instantiate and how to instantiate
it isn't as simple as calling
intention-revealing Creation
Methods, particularly when you
have several subclasses and
numerous ways to instantiate
them. It is simpler if clients don't
have to know about subclasses,
but can instead obtain instances
from superclass Creation
Methods.

Mechanics

1. Make the subclass constructor that you'd like to encapsulate via a superclass Creation

Method protected.

2. Create an intention-revealing Creation Method on the superclass. Makes its body a call to

the protected subclass constructor.

3. Replace dl callsto the subclass constructor with calls to the superclass Creation Method.

4. Compile and test after each replacement.

Example

1. In the refactoring, Replace Multiple Constructors with Creation Methods* (9), three loan types
— Term Loan, Revolver and RevolverTerm — were represented in the single Loan class. In this
example, each of the loan types will be a subclass of an abstract Loan superclass:

abstract class Loan {
protected Loan(...) {
}

}

public class Ternmloan extends Loan {
public Termloan(...) {
super(...);

}

public class Revol ver extends Loan {
public Revolver(...) {
super(...);

}

public class RCTL extends Loan {
public RCTL(...)
super(...);

Page 16 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

The abstract Loan superclass constructor is protected, and the congructors for the three
subclasses are public. We'll focus on the TermLoan class. The first step is to protect its
constructor:

public class TermlLoan extends Loan {
protected TermLoan(...){
super(...);

}

2. The next step is to create intention-revealing Creation Methods on the Loan class for the
protected TermL oan constructor:

abstract class Loan...
public static Loan newTernlioan(...) {
return new Ternloan(...);
}

3. We must now replace client calls to the TermLoan constructor with a call to the superclass
Creation Method:

client code...
Loan ternmLoan = Loan. newTer nLoan(1000f, 250f, getCustRating(), expiryDate);

Consider what this code now does: it gives access to the subclass via the superclass, and ensures
that clients obtain subclass instances via the Loan interface. This prevents clients from directly
instantiating a TermLoan. More important, the design communicates to other programmers Loan
subclasses are not meant to be public — the convention is to offer up access to subclasses via the
superclass and a common interface.

4. Inthisfina step we compile and test. If you do test-first design, instead of waiting till step 4

to test, you will begin this refactoring by writing a test to obtain the Loan instance you want from
the intention-revealing superclass Creation Method.

Page 17 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Extract Creation Class*

Too many Creation Methods on a class obscure
it's primary responsibility (or responsibilities)

Move the Creation Methods for a related set
of classes to one Creation Class

Loan

#Loan(...)
+newAdvisor(...)

+newl etterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...) <
+newTermLoan(...)
+newVariable(...)
+calcCapital(...)
+calcincome(...)
+calcROC(...)
+setOutstanding(...)

2

Loan K————— LoanCreator (- Client

,,,,,,,,,, Client

#Loan(...) +newAdvisor(...)
+calcCapital(...) +newl etterOfCredit(...)
+calcincome((...) +newRCTL(...)
+calcROC(...) +newRevolver(...)
+setOutstanding(...) +newSPLC(...)
+newTermloan(...)
+newVariable(...)

Motivation

This refactoring is essentially Extract Class [Fowler], only it is done on an existing class's
Creation Methods. There's nothing wrong with a few Creation Methods on a class, but as the
number of them grows, a class's own primary responsibilities — it's main purpose in life — can
feel like it is obscured, outweighed by too much creational code. At such times, it's best to
restore the class s identity by extracting all of its Creation Methods into their own home. We call
such a home a Creation Class. Creation Classes are alittle like Abstract Factories [GoF] in that
they often create a related set of objects, but are most unlike Abstract Factories in that you don’'t
substitute one Creation Class for another at runtime, because you’ re not concerned with swapping
out one family of products for another. Creation Classes are usually implemented as classes that
contain static methods that create object instances.

Page 18 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication Duplication Simplicity
When we create classes, we Duplication is not an issue with One principle states that the
give then responsibilities. One respect to this refactoring. fewer responsibilities a class
such responsibility, which is has, the simpler it is. That
often not a class’s primary principle can lead to an
responsibility, is object creation. explosion of class, which can
When object creation begins to make a system not simple to
dominate the public interface of work with at all. So one must
the class, the class no longer use judgement. When creational
strongly communicates its main responsibilities mix too much
purpose. When that happens, with a class’s main
it's best to communicate the act responsibilities, the class isn’t
of object creation by creating a simple. Simplify it by extracting
special class just to create the creational code into a
instances of the object —i.e. a Creation Class.
Creation Class.

Mechanics
1. Identify aclass (whichwe'll call “A”) that is overbaanced with Creation Methods.

2. Create a class that will be your Creation Class. Name it after it's purpose in life, which
will beto create various objects from a set of related classes.

3. Move al Creational Methods from A to your new class, making sure that all protection
privledges are accounted for.

4. Change al callers to obtain object references from your new Creation Class, rather than
fromA.

Example

Though | use different example code from Martin Fowler, | do tend to repeat it as | am
intrinsically lazy. So if you don't mind, we'll work with the same brainless Loan example,
outlined in the code sketch above. Assume that there is test code for the example code below —I
didn’'t include it the text since thisrefactoring isfairly trivial.

1. We begin with a Loan class that has lots of code for handling the responsibilities of a Loan
and being a creator of Loan objects:

public class Loan {
private doubl e notional;
private doubl e out standi ng;
private int rating;
private Date start;
private Capital Strategy capital Strategy;
private Date expiry;
private Date maturity;
/1 . . . nore instances variables not shown

protected Loan(doubl e notional, Date start, Date expiry,
Date maturity, int riskRating, Capital Strategy strategy) {
this.notional = notional;
this.start = start;
this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capital Strategy = strategy;

}
public double calcCapital () {
return capital Strategy.calc(this);

Page 19 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

public void setQutstandi ng(doubl e newQut st andi ng) {
out st andi ng = newQut st andi ng;
}

/1 ... nore nethods for dealing with the primary responsibilities of a Loan, not shown

public static Loan newAdvi sor(doubl e notional, Date start,
Date nmaturity, int rating)
return new Loan(notional, start, null, maturity, rating, new TernlLoanCapital ());

public static Loan newLetterOf Credit(double notional, Date start,
Date naturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newRCTL(doubl e notional, Date start,
Date expiry, Date naturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital ());

public static Loan newRevol ver (doubl e notional, Date start,
Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

public static Loan newSPLC(doubl e notional, Date start,
Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newTernLoan(doubl e notional, Date start,
Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newari abl eLoan(doubl e notional, Date start,
Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital ());

2. Next, | create a class called LoanCr eat or, since it’s sole purpose in life is to be a place
where clients can obtain Loan instances:

public class LoanCreator {

}

3. Now | move all of the Creation Methods from Loan to LoanCr eat or , placing LoanCr eat or
in the same package as Loan (and it's Capita stategies) so it has the protection level it needs to
instantiate Loans:

public class LoanCreator {
public static Loan newAdvi sor(doubl e notional, Date start,
Date maturity, int rating)
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newLetterOf Credit(double notional, Date start,
Date nmaturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newRCTL(doubl e notional, Date start,
Date expiry, Date naturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital ());

public static Loan newRevol ver (doubl e notional, Date start,
Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital ());

public static Loan newSPLC(doubl e notional, Date start,
Date naturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newTernioan(doubl e notional, Date start,
Date nmaturity, int rating) {

Page 20 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return new Loan(notional, start, null, maturity, rating, new TernlLoanCapital ());
}
public static Loan newari abl eLoan(doubl e notional, Date start,
Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

4. Tofinish, | simply change calls of the form:

Loan termLoan = Loan. newTer mLoan(..)
to

Loan termLoan = LoanCreator. newTler mLoan(..)

Page 21 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Conditional Calculationswith Strategy*

You use alot of conditional logic in acalculation
Delegate the calculation to a Strategy object

public class Loan ...
public double calcCapital() {
return riskAmount() * duration() * RiskFactor.forRiskRating(rating);

private double riskAmount() {
if (unusedPercentage !=1.00)
return outstanding + calcUnusedRiskAmount();
else return outstanding;

private double calcUnusedRiskAmount() {
return (notional - outstanding) * unusedPercentage;

private double duration() {
if (expiry == null)
return ((maturity.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
else if (maturity == null)
return ((expiry.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
else {
long millisToExpiry = expiry.getTime() - start.getTime();
long millisFromExpiryToMaturity = maturity.getTime() - expiry.getTime();
double revolverDuration = (millisToExpiry/MILLIS_PER_DAY)/365;
double termDuration = (millisFromExpiryToMaturity/MILLIS_PER_DAY)/365;
return revolverDuration + termDuration;
}
}

private void setUnusedPercentage() {
if (expiry != null && maturity != null) {
if (rating > 4) unusedPercentage = 0.95;
else unusedPercentage = 0.50;
} else if (maturity != null) {
unusedPercentage = 1.00;
} else if (expiry != null) {
if (rating > 4) unusedPercentage = 0.75;
else unusedPercentage = 0.25;
}
}

v

CapitalStrategy

Loan

#loan : Loan

+calc(Loan loan)
#riskAmount();
#duration();

TermLoanCapital RevolverCapital RCTL Capital
#riskAmount(); #riskAmount(); #riskAmount();
#duration(); #duration(); #duration();

Page 22 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

A lot of condition logic can obscure any calculation, even a simple one. When that happens,
your calculation can be misunderstood by others and harder to maintain, debug and extend.
Strategy is a pattern that deals well with calculations. A context object obtains a Strategy object
and then delegates a calculation (or calculations) to that Strategy. This lightens the context class
by moving the conditional calculation logic to a small collection of independent calculation
objects (strategies), each of which can handle one of the various ways of doing the calculation.

Does this sound like a pattern you'd refactor to alot? It may, but in my experience, | don’t
refactor to Strategy that often. | certainly have refactored toit, but | find that alot of calculation
logic | either write or come across isn't sufficiently complicated to justify using Strategy. In
addition, when there is enough conditiona logic to merit using the pattern, | have to consider
whether a Template Method would be a better choice. But using a Template Method assumes
that you can place the skeleton of your calculation in a base class, and have subclasses supply
some or all of the calculation details. That may or may not be possible given your situation. For
example, if you already have subclasses and the various ways of calculating something won't
easily fit into those subclasses, you may not be able to Form Template Method [Fowler]. Or, you
may find that by placing calculations in separate subclasses, you limit your ability to swap one
calculation type for another at runtime, since it would mean changing the type of object aclient is
working with, rather than simply substituting one Strategy object for another.

Once you do decide to refactor to Strategy, you have to consider how the calculation
embedded in each strategy class will get access to the variables it needs to do its calculation. To
accomplish that, | usually pass the context class as a reference to the Strategy object, and make
whatever variables are needed by each Strategy accessible via public methods on the context
class.

The final thing to consider is how your context class will obtain its Strategy. Whenever
possible, | like to shield client code from having to worry about both instantiating a Strategy
instance and passing it to a context’'s constructor. Creation Methods can help with this: just
define one or more methods that return a context instance, properly outfitted with the appropriate
Strategy instance.

Communication Duplication Simplicity
Copious conditional logic Conditional calculation code can | Classes that contain a lot of
obscures the steps of a often contain duplicate conditional logic are never
calculation. Communicate the conditional statements that are simple. Butif a class contains
steps clearly by separating each | used to calculate various lots of conditional logic for
calculation variety into its own variables in an algorithm. calculating something in a
Strategy class. Then clarify Replace all of the conditional variety of ways, it may also be
which variety of calculation your | logic by encapsulating each more complex than it needs to
object uses by writing code to variety of the calculation in its be, as it knows too much.
pass the appropriate Strategy to | own Strategy class. Simplify the class by extracting
the object for its use in each variety of the calculation
performing the calculation. into its own Strategy class and

then delegate to one of these
classes to obtain a calculation.

Mechanics

1. On aclass (which we'll call “A”) identify a calculation method, or helper methods to
such a method, that contain a lot of conditional logic. This class will be known as your
context class asit will be the context for a Strategy object.

2. Create a concrete class and name it based on the behavior performed by the chosen
calculation method. Thiswill be your Strategy.

Page 23 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

You can append the word “ Srategy” to the class name if you find it helps communicate
the purpose of this new type.

3. Apply Move Method [Fowler] to move the primary calculation method and any helper
methods to your Strategy class. If the code you move needs to obtain information from
A, pass A as a parameter to the primary calculation method or as a parameter to the
Strategy class' s constructor and make sure the information on A is publicly available.

You can aternatively pass the necessary information from A to the Strategy, without
passing a reference of A to the Strategy. This will result in less coupling between A and
your Strategy, but may require you to pass a lot of information. See Design Patterns
[GoF] for an in-depth discussion about communication between the context, A, and the
Strategy.

4. Createafield (whichwe'll call “S’) in A for the Strategy and instantiate it.
5. Update the primary calculation method in A to delegate the calculation to S.
6. Compile and test

7. On the Strategy class, apply Replace Conditional with Polymorphism [Fowler] on the
primary calculation method and any helper methods you moved from A. It is best to do
this step slowly, by focusing on extracting one subclass at atime, then performing steps 8
and 9 below and then repeating this step. When finished, you will have substantially
reduced the conditional logic in your Strategy class and you will have defined concrete
Strategy classes for each variety of the calculation you started with.

Consider applying Form Template Method [Fowler] for your Strategy’s primary
calculation method. Y ou may also make your original Strategy class abstract.

8. Add codeto A to either useitsinternal logic to set the value of S or to allow an externa
client to passin avaluefor S.

If you go with the latter approach, let clients passin a value for S via constructor calls if
clientswon't need to change S'svalue at runtime. Otherwise, supply a setter method to let clients
set the value of S at runtime. For convenience, you can also do both. If clientswill be able to pass
inavalue of Sto A, you'll need to update the code for every existing client of A.

9. Compile and test.
Example

The example in the code sketch above deals with calculating capital for bank loans. It shows
afair about of conditional logic that's used in performing this calculation, although it is even less
conditional logic than was contained in the origina code, which had to handle capital calculations
for 7 different loan profiles.

In the example, the context class is called Loan. WEe'll be seeing how Loan’s method for
calculating capital can be strategized, i.e. delegated to a Strategy object. As you study the
example, you may wonder why Loan wasn't just subclassed to support the three different styles
of capital calculations. That was an option, however, because the application that uses Loan
needed to change a Loan’s capital calculation at runtime, without changing the class type of the
Loan, it was better to use the Strategy pattern.

Page 24 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

1. WE'll begin by looking at the Loan class's cal cCapi t al () method and its helper methods
(note: | show afew testsfor cal cCapi tal () instep 6 below):

public class Loan ...
private doubl e notional;
private doubl e out standi ng;
private int rating;
private doubl e unusedPer cent age;
private Date start;
private Date expiry;
private Date maturity;
private static final int MLLIS PER DAY = 86400000;

public double calcCapital () {
return ri skAmount () * duration() * Ri skFactor.forRi skRating(rating);

private doubl e cal cUnusedRi skAnount () {
return (notional - outstanding) * unusedPercentage;
}

private doubl e duration() {
if (expiry == null)
return ((maturity.getTine() - start.getTime()) / MLLIS PER DAY) / 365;

else if (maturity == null)
return ((expiry.getTime() - start.getTinme()) / MLLIS PER DAY) / 365;
el se {

long mllisToExpiry = expiry.getTime() - start.getTime();

long mllisFronmExpiryToMaturity = maturity.getTine() - expiry.getTinme();
doubl e revol verDuration = (mllisToExpiry / MLLIS PER DAY) / 365;

doubl e ternDuration = (mllisFromExpi ryToMaturity / MLLIS_PER DAY) / 365;
return revol verDuration + ternDuration;

}

}
private doubl e riskAmount () {
if (unusedPercentage != 1.00)
return outstanding + cal cUnusedRi skAmount ();
el se
return outstanding;

}

public void setQutstandi ng(doubl e newCut st andi ng) {
out st andi ng = newQut st andi ng;

}

private void set UnusedPercentage() {
if (expiry !'=null & maturity !'= null) {
if (rating > 4)
unusedPer cent age = 0. 95;
el se
unusedPer cent age = 0. 50;
} elseif (maturity !'=null) {
unusedPer cent age = 1. 00;
} elseif (expiry !'=null) {
if (rating > 4)
unusedPer cent age = 0. 75;
el se
unusedPer cent age = 0. 25;

2. The Strategy I'd like to define will handle the cal cCapi t al () caculation. So | create aclass
called Capi t al Strat egy.

public class Capital Strategy {
}

3. Now I'm up to the hardest step: | need to move methods from Loan to Capi tal Strat egy. |
begin with the cal cCapi t al () method. In this case, | don’'t want to move this method, but
rather, copy itto Capi t al Str at egy:

public class Capital Strategy {
public double calc() {
return riskAmount () * duration() * RiskFactor.forRi skRating(rating);

Page 25 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

That code won't even compile, because Capi t al St r at egy doesn’t contain the methodsit is
calling. No problem. | passcal c() alLoan parameter and update the code as follows:

public doubl e cal c(Loan | oan) {
return |l oan.riskAnount() * loan.duration() * Ri skFactor.forR skRating(loan.rating);
}

That gets us closer, but the compiler still complains that the methods and variable I'm
accessing on Loan aren’'t visible (i.e. they are private, not public). | change the visibility to
public and finally the compiler is happy. Later, I'll be moving some of these public
methods/fields to Capi t al St r at egy or making them accessible viaLoan getter methods.

Now | focus on moving each piece of the calculation from Loan to Capi t al St rat egy. The
method, ri skAmount () (whichisnow public) isfirst on my radar screen.

public double riskAmunt() {
if (unusedPercentage != 1.00)
return outstanding + cal cUnusedRi skAnount () ;
el se
return outstanding;

This method relies on other fields and methods within Loan. | study the code and see that the
field, out st andi ng, is used extensively in the Loan class, but the field, unusedPer cent age,
aong with the methods, set UnusedPer cent age() and cal cUnusedRi skAmout () are only
there to help the cal cCapital () method. So | decide to move al of this code, with the
exception of thefield, out st andi ng, to Capi t al Str at egy:

public class Capital Strategy {
private Loan | oan;
public doubl e cal c(Loan |oan) {

this.loan = | oan;
return riskAmount () * loan.duration() * R skFactor.forRi skRating(loan.rating);
}
private doubl e cal cUnusedPercent age() {
if (loan.expiry !'= null && loan.maturity != null) {
if (loan.rating > 4)
return 0.95;
el se
return 0.50;
} elseif (loan.maturity != null) {
return 1.00;
} elseif (loan.expiry !'=null) {
if (loan.rating > 4)
return 0.75;
el se
return 0. 25;
return 0.0;

}
private doubl e cal cUnusedRi skAmount () {
return (loan.notional - |oan.outstanding) * cal cUnusedPercentage();

}
public double riskAmount () {

if (cal cUnusedPercentage() != 1.00)
return | oan. outstandi ng + cal cUnusedRi skAmount ();
el se

return | oan. out standi ng;

}
}

To make this compile, | need to make more fields on Loan public:

public class Loan ...
Page 26 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

publ i c doubl e notional;

publ i ¢ doubl e out st andi ng;

public int rating;

private—double—unusedPercentager- //replaced with cal cul ati on method on Capital Strategy
public Date start;

public Date expiry;

public Date maturity;

By now I'm not happy having all these public fields. So | make getter methods for them and
update the Capi t al Strat egy code accordingly. After this, al | do is move the dur ati on()
calculation over to Capital Strategy and this step of the refactoring is done
Capi t al St r at egy now looks like this:

public class Capital Strategy {
private Loan | oan;
private static final int MLLI S PER DAY = 86400000;
public doubl e cal c(Loan |oan) {
this.loan = | oan;
return riskAmount () * duration() * RiskFactor.forRi skRating(loan.getRating());

private doubl e cal cUnusedPercent age() {

if (loan.getExpiry() !'= null && loan.getMaturity() != null) {
if (loan.getRating() > 4) return 0.95;
el se return 0.50;

} elseif (loan.getMaturity() != null) {
return 1.00;

} else if (loan.getExpiry() !'= null) {
if (loan.getRating() > 4) return 0.75;
el se return 0. 25;

return 0.0;
}
private doubl e cal cUnusedRi skAnmount () {
return (loan.getNotional () - |oan.getQutstanding()) * cal cUnusedPercentage();

}
public double duration() {
if (loan.getExpiry() == null)

return (
(loan.getMaturity().getTinme() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;
else if (loan.getMaturity() == null)
return (
(loan.get Expiry().getTine() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;
el se {

long mllisToExpiry = |loan.getExpiry().getTine() - loan.getStart().getTinme();
long mllisFronExpiryToMaturity =

| oan. get Maturity().getTime() - |oan.getExpiry().getTinme();
doubl e revol verDuration = (millisToExpiry / MLLIS PER DAY) / 365;
doubl e ternDuration = (mllisFromExpi ryToMaturity / MLLIS PER DAY) / 365;
return revol verDuration + ternDuration;

}
}
public double riskAmunt() {
if (cal cUnusedPercentage() != 1.00)
return | oan. get Qutstandi ng() + cal cUnusedRi skAmount ();
el se

return | oan. get Qut standi ng();

4. Now | need to make afield inthe Loan classfor the Capi t al St r at egy class:

public class Loan...
private Capital Strategy capital Strategy = new Capital Strategy();

5. And I'mfinally ready to have Loan delegate its calculation of capital to Capi tal Strategy’s
cal ¢() method:

public double calcCapital () {
Page 27 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return capital Strategy.cal c(this);

}

6. | can now compile and run my tests. Here are afew of the tests that ensure whether the capital
calculation works for various types of loan profiles:

public void testTermlLoanCapital () {
Loan termLoan = Loan. newTer mLoan(10000. 00, startOfLoan(), maturity(), R SK_RATING;
t er mLoan. set Qut st andi ng(10000. 00) ;
assert Equal s("Capital for Term Loan", 37500.00, ternlioan.calcCapital (), penny);

}

public void testRevol verROC() {
Loan revol ver = Loan. newRevol ver (10000. 00, startOf Loan(), expiry(), R SK_RATING;
revol ver. set Qut st andi ng(2000. 00) ;
assert Equal s("Capital for Revolver", 6000.00, revolver.calcCapital (), penny);

}

public void testRevol ver Ter fROC() {
Loan rctl = Loan. newRCTL(10000.00, startOfLoan(), expiry(), maturity(), Rl SK_RATI NG ;
rctl. set Qut st andi ng(5000. 00) ;
assert Equal s(" Capital for RCTL", 28125.00, rctl.calcCapital (), penny);

}

These tests, and similar ones, all run successfully.

7. At this point I’ve moved alot of code out of the Loan class and into the Capi t al St r at egy
class, which now encapsulates the bulky conditional calculation logic. | want to tame this logic
by decomposing Capital Strategy into several subclasses, one for each way we calculate
capital. | do this by applying Replace Conditional with Polymorphism [Fowler].

Firgt, | identify a total of three different ways of doing the capital calculation, each of which
corresponds to a specific Loan profile: Term loan, Revolver or RCTL (a combination of a
Revolver, which converts to a Term Loan on an expiry date). | decide to start by creating a
subclass of Capi t al St rat egy that is capable of calculating capital for a Term Loan:

public class TernlLoanCapital extends Capital Strategy {
}

Now, | find the specific calculation code that applies to a Term Loan and push it down into the
new subclass:

public class TernmloanCapital extends Capital Strategy {
protected doubl e duration() {
return (

(loan.getMaturity().getTime() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;

}

protected doubl e riskAmount () {
return | oan. get Qut standi ng();

}

}

I now push on to steps 8 and 9 of the refactoring, after which I'll circle back to define, configure
and test two more concrete Strategy classes. Revol ver Capi t al and RCTLCapi t al .

8. Now | need to configure the Loan class with the Ter mLoanCapi t al strategy when it is
applicable, so that | can test whether it works. To do this, | make the following modifications:

public class Loan...
private Capital Strategy capital Strategy;

protected Loan(double notional, Date start, Date expiry,
Date maturity, int riskRating, Capital Strategy strategy) {
this.notional = notional;
this.start = start;

Page 28 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capital Strategy = strategy;

public static Loan newRCTL(doubl e notional, Date start, Date expiry,
Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new Capital Strategy());

public static Loan newRevol ver (doubl e notional, Date start, Date expiry,
int rating) {
return new Loan(notional, start, expiry, null, rating, new Capital Strategy());

public static Loan newTernioan(doubl e notional, Date start, Date maturity,
int rating) {
return new Loan(notional, start, null, maturity, rating, new TermnmLoanCapital ());

}

9. | compile and test and all goes well. Now | circle back to step 7, to define the additional
concrete Strategy classes, configure the Loan class to work with them and test everything. When
I'm done, aimost al of the original conditional calculation logic is gone and | have three
Strategies for calculating capital:

public class Loan...
public static Loan newRCTL(doubl e notional, Date start, Date expiry,
Date naturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

public static Loan newRevol ver (doubl e notional, Date start, Date expiry,
int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

public static Loan newTernLoan(doubl e notional, Date start, Date maturity,
int rating) {
return new Loan(notional, start, null, maturity, rating, new TernmlLoanCapital ());

}

public abstract class Capital Strategy {
protected Loan | oan;
protected static final int MLLI S PER DAY = 86400000;
publ i c doubl e cal c(Loan | oan) {
this.loan = | oan;
return riskAmount () * duration() * RiskFactor.forRi skRating(loan.getRating());

protected abstract double duration();
protected abstract double riskAmunt();
}

public class TernlioanCapital extends Capital Strategy {
protected doubl e duration() {
return (
(loan.getMaturity().getTime() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;

}

protected doubl e riskAmount () {
return | oan. get Qut standi ng();

}

}

public class RevolverCapital extends Capital Strategy {
private doubl e cal cUnusedPercent age() {
if (loan.getRating() > 4) return 0.75;
el se return 0. 25;

}
private doubl e cal cUnusedRi skAmount () {
return (loan.getNotional () - |oan.getCQutstanding()) * cal cUnusedPercentage();

protected double duration() {
return (
(loan. getExpiry().getTime() - loan.getStart().getTime()) / MLLIS PER DAY)
| 365;

}
protected doubl e riskAmunt () {
Page 29 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return | oan. get Qut standi ng() + cal cUnusedRi skAmount ();
}
}

public class RCTLCapital extends Capital Strategy {
private doubl e cal cUnusedPercent age() {
if (loan.getRating() > 4) return 0.95;
el se return 0.50;
}
private doubl e cal cUnusedRi skAmount () {
return (loan.getNotional () - |oan.getQutstanding()) * cal cUnusedPercentage();

protected doubl e duration() {
long mllisToExpiry = |loan.getExpiry().getTine() - loan.getStart().getTime();
long mllisFronExpiryToMaturity =
| oan. getMaturity().getTine() - l|oan.getExpiry().getTime();
doubl e revol verDuration = (mllisToExpiry / MLLIS PER DAY) / 365;
doubl e ternDuration = (mllisFromExpi ryToMaturity / MLLIS PER DAY) / 365;
return revol verDuration + ternDuration;

}
protected doubl e riskAmount () {

return | oan. get Qut standi ng() + cal cUnusedRi skAmount () ;
}

}

Thinking I’'m now done, | inspect the results of the refactoring. | wonder, “Is there anything left
to smplify or communicate better?” “Is there any duplication to remove?’ The duration
calculations for the three strategies execute a similar formula: find the difference in time between
two dates, divide them by the number of milliseconds in a day, and divide that by 365. That
formulais being duplicated! To remove the duplication, | apply Pull Up Method [Fowler]:

public abstract class Capital Strategy...
private static final int DAYS _PER YEAR = 365;
protected doubl e cal cDuration(Date start, Date end) {
return ((end.getTinme() - start.getTine()) / MLLIS _PER DAY) / DAYS_PER YEAR

public class TernLoanCapital extends Capital Strategy...
protected doubl e duration() {
return cal cDuration(loan.getStart(), |oan.getMaturity());
}

public class RevolverCapital extends Capital Strategy {
protected doubl e duration() {
return cal cDuration(loan.getStart(), |oan.getExpiry());
}

public class RCTLCapital extends Capital Strategy...
prot ected doubl e duration() {
doubl e revol verDuration = cal cDuration(loan.getStart(), |oan.getExpiry());
doubl e ternDuration = cal cDuration(loan.getExpiry(), loan.getMaturity());
return revol verDuration + ternDuration;

}

I compile, run the tests and everything is good. Now, for the moment, I’ m done.

Page 30 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Implicit Tree with Composite*

Y ou implicitly form atree structure, using a
primitive representation, such as a String

Replace your primitive tree representation
with Composite

String orders = "<orders>";

orders += "<order number='123">";
orders += "<item number='x1786">";
orders += "carDoor";

orders += "</item>";

orders += "</order>";

orders += "</orders>";

2

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttribute("number"”, "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

String xml = orders.toString();

Motivation

One problem with implicit tree construction is the tight coupling between the code that builds
the tree and how the tree is represented. Consider the example above, in which an XML
document is built using a String. The nodes on the built XML tree and the way that they are
formatted are combined in one place. While that may see simple, it actually makes it harder to
change the tre€'s representation and forces every programmer to remember every tree
representation rule: like using single quotes for attributes or closing all open tags. I've seen
programmers fight many bugs that originated in primitive tree formatting mistakes.

A Composite encapsulates how atree is represented. This means that a client only needs to
tell a Composite what to add to a tree and where to add it. When a client needs a representation
of the tree, it can ask the Composite to render it. This simpler arrangement leads to less error-
prone code.

But this doesn’t mean that you should aways avoid using primitive tree construction. What if
your system doesn't create many trees? In that case, why go to the trouble of creating a
Composite when some primitive tree construction code would do? If you later find that you or
others are creating more trees, you can refactor to a solution that simplifies the tree construction
perhaps by decoupling the tree-building code from the tree-representation code.

The choice may also involve your development speed. On a recent project, | was tasked with
generating an HTML page from XML data using an XSLT processor. For this task, | needed to
generate an XML tree that would be used in the XSLT transformation. | knew | could use a
Composite to build that tree, but | instead choose to build it with a String. Why? Because | was
more interested in going fast and facing every technical hurdle involved in doing the XSLT
transformation than | was in producing refined XML tree construction code. When | completed
the XSLT transformation, | when back to refactor the primitive tree construction code to use a
Composite, since that code was going to be emulated in many areas of the system.

Page 31 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication

Duplication

Simplicity

The best tree-construction code
communicates the structure of a
tree without overwhelming
readers with unnecessary tree-
construction details. Primitive
tree-construction code exposes

Code that manually builds a tree
often repeats the same set of
steps: format a node, add the
node to the tree and balance the
node with a corresponding node
or some such thing. Composite-

It's easier to make mistakes
building trees manually than it is
to build trees using Composite.
Manually-constructed trees must
ensure that child nodes are
added correctly — for example, a

constructed trees minimize
duplication by encapsulating
repetitive instructions, like
formatting nodes and tree-
construction mechanics.

too many details. Trees
composed using Composite
communicate better by hiding
tedious and repetitive tree-
construction tasks.

tag in an XML tree must have a
corresponding end tag. By
knowing how to construct
themselves, Composite-
constructed trees are simpler.

Mechanics
1. Identify the primitive tree-construction code you' d like to refactor.

2. ldentify node types for your new Composite. Keep it smple: test-first design one or more
concrete node types and don’t worry about creating an abstract node type (you may not
need one). Create a method to validate the contents of your budding Composite.

3. Give your nodes the ability to have children. Do not give nodes the ability to remove
children if your application only adds nodes and never removes them. Compile and test.

4. If needed, give clients away to set attributes on nodes. Compile and test.

5. Replace the original tree-construction code with calls to your new Composite. Compile
and test.

Example

1. We'll begin with the XML example from the code sketch above:

String orders = "<orders>";
orders += "<order nunber='123"'>";
orders += "<item nunber='x1786">";
orders += "carDoor";

orders += "</item";

orders += "</order>";

orders += "</orders>",

2. Inthis case, every node in the tree has an open tag (“<orders>") and close tag (“</orders>").
While some of the nodes have attributes and values, | identify just one node type that we need to
produce a Composite version of thistree. | test-first design anode type called TagNode, give this
classaway to set its name and create atoString() method to return the resulting XML.:

public void test OneNodeTree() {
String expectedResult =
"<orders>" +
"</ orders>";
TagNode orders = new TagNode("orders");

assert XM_LEqual s("xm conparison", expectedResult, orders.toString());

}

public class TagNode {
private String tagNane;

Page 32 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public TagNode(String nane) {
tagName = nane;

}

public String toString() {
String result = new String();
result += "<" + tagName + ">";
result += "</" + tagNane + ">";
return result;

3. Next, | give TagNode the ability to have children.

public void testAddi ngChil drenToTree() {
String expectedResult =
"<orders>" +
"<order>" +
"<itemp" +
"<litem" +
"</ order>" +
"</ orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode item = new TagNode("itent);
orders. add(order);
order.add(item;
assert XM_Equal s("addi ng children", expectedResult, orders.toString());

}

public class TagNode {
private String tagNane;
private List children = new ArraylList();
public TagNode(String name) {
tagName = nane;

}
public void add(TagNode chil dNode) {
chi | dren. add(chi | dNode) ;

}
public String toString() {
String result = new String();
result += "<" + tagName + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();
}
result +="</" + tagName + ">";
return result;

4. Now the Composite must be extended to support XML attributes or values or both. Again, | do
this by letting my test code drive the development process:

public void test TreeWthAttri butesAndVal ues() {
String expectedResult =
"<orders>" +
"<order>" +
"<item nunber ="' 12660' quantity="1">" +
"Dog House" +
"<[item" +
"<item nunber =' 54678' quantity="1">" +
"Bird Feeder" +
"<[item" +
"</ order>" +
"</ orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode iteml = new TagNode("itent);
iteml. addAttri bute("nunmber", "12660");
iteml. addAttribute("quantity", "1");
itenl. set Val ue("Dog House");

Page 33 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

TagNode iten2 = new TagNode("itent);

itenR. addAttri bute("nunber", "54678");

itenR. addAttribute("quantity", "1");

itenR. setValue("Bird Feeder");

orders. add(order);

order.add(iteml);

order. add(iten®);

assert XM_LEqual s("attri but es&val ues", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;
private String tagValue = "";
private String attributes ="";
private List children = new ArraylList();
public TagNode(String name) {
tagName = nane;

}
public void add(TagNode chil dNode) {
chi | dren. add(chi | dNode) ;

public void addAttribute(String name, String value) {
attributes += (" " + nane + "="" + value + "'");
}

public void addVal ue(String val ue) {
tagVal ue = val ue;

}
public String toString() {
String result = new String();
result += "<" + tagName + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

}

if (!tagVal ue.equals(""))
result += tagVal ue;

result += "</" + tagNane + ">";

return result;

5. Inthefinal step, | replace the original primitive tree-construction code with the
Composite code, compile and test:

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttri bute("nunber", "123");
orders. add(order);
TagNode item = new TagNode("itent);
item addAttribute("nunber", "x1786");
i tem addVal ue(" car Door");
order. add(item;

Page 34 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Encapsulate Composite with Builder**

Y our Composite code exposes too many details, forcing clients to
create, format, add and remove nodes and handle validation logic

Encapsulate the Composite with a simpler,
mor e intention-revealing Builder

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttribute("number"”, "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

String xml = orders.toString();

2

XMLBuilder orders = new XMLBuilder("orders");
orders.addBelow("order");
orders.addAttribute("number”, “123");

orders.addBelow("item");
orders..addAttribute("number”, "x1786");
orders.addValue(“carDoor");

String xml = orders.toString();

Motivation

I’m aways interested in ssimplifying client code: | want it to read as clearly as English. So
when it comes to creating really simple tree-construction code, | like the Builder pattern even
better than the Composite pattern. Builders give clients a clean and easy-to-use interface while
hiding details about how the nodes of a Composite are hooked together and what accompanying
steps must take place during construction.

If you study atypical piece of client code that creates some tree structure, you'll often find
node creation and setup logic mixed together with tree creation and validation logic. A Builder-
based aternative can simplify such code by taking on the burden of node creation and tree
validation logic and let client code concentrate on what is important: building the tree. The result
of refactoring to Builder is often ssimpler, more intention-revealing client code.

| use Builders alot with XML. XML documents represent trees, so they work well with both
the Composite and Builder patterns. But Composite-only solutions for creating an XML tree
expose too many details. XML Builders, by contrast, offer anice way to have your cake and eat it
too: clients talk to a simple XML Builder interface, while the XML Builder itself relies on a
Composite for representing the XML tree. The example below will show you how thisis done. In
addition, I've included an extended example which shows how an XML Builder was updated to
implement and encapsulate performance logic used in rendering a Composite of XML nodes to a
string.

Page 35 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication Duplication Simplicity
Client code that creates a tree Composite-based tree- With a Composite, a client must
needs to communicate the construction code is filled with know what, where and how to
essence of the activity: what is calls to create new nodes and add items to a tree. With a
added to the tree, and where itis | add them to trees. Builder code | Builder, a client needs to know
added. A Composite solution removes this duplication by only what and where to add to
doesn’t communicate this clearly | handling node creation and the tree; the Builder takes care
because it exposes too many simplifying how nodes are added | of the rest. Builders often
details. By handling the tree- to a tree. simplify client code by handling
construction details, Builders the mechanics of tree
enable client code to construction.
communicate clearly.

Mechanics

1. Identify the Composite that you would like to encapsulate.

2. Create anew Builder class:
* Givethe new class a private instance variable for the encapsulated Composite.
* Initialize the Composite in a constructor.
» Create amethod to return the results of doing abuild.

3. Create intention-revealing methods on your Builder for every type of node that gets
added to your Composite. These methods will add new nodes to an inner Composite and
keep track of the state of the tree.

You may create additional methods to let users set attributes on nodes, or you can let
users add new nodes and set attributes on them using one convenient method call.

4. Replace the tree-construction Composite calls with calls to the Builder. Compile and test.
Example

1. WE€'ll begin with the Composite code that was shown in the code sketch above. As| study this
code, | realize that it contains more detail than it needs to:

TagNode orders = new TagNode("orders");

TagNode order = new TagNode("order");

order. addAttri bute("nunber", "123");

orders. add(order);
TagNode item = new TagNode("itent);
item addAttri bute("nunmber", "x1786");
i tem addVal ue(" car Door");
order.add(item;

2. | define an XMLBuilder class, encapsulate the original Composite, initialize it and write a
toString() method to obtain the results of a build. | do this all from test code, which helps me
confirm that my new class produces correct XML.

public void testOneEl enent Tree() {
String expected =
"<orders>" +
"</ orders>";
XM_Bui | der buil der = new XM.Bui |l der ("orders");
assert XMLEqual s("one el ement tree", expected, builder.toString());

}
Now, my Builder looks like this:
public class XM.Buil der {

Page 36 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

private TagNode root;
public XM.Buil der(String rootNane) {
root = new TagNode(r oot Nane) ;

}

public String toString() {
return root.toString();

}

}

3. Next, | create methods for every type of node that gets added to the Composite. In this case
it's trivial: there are only TagNodes. But | still have to consider the different ways in which
clients will add nodes to the inner Composite. | begin with the case of adding nodes as children
of parent nodes:

public void test AddBel ow() {
String expected =
"<orders>" +
"<order>" +
"<itenp" +
"<litem" +
"</ order>" +
"</ orders>";
XML.Bui | der bui | der = new XM.Bui | der ("orders");
bui | der. addBel ow("order");
bui | der. addBel ow("itent');
assert XM_Equal s("addi ng bel ow', expected, builder.toString());
}

This leads to the creation of the addBel ow() method, along with a few changes to the
XMLBui | der class:

public class XM.Builder {
private TagNode root;
private TagNode current;
public XM.Buil der(String rootNanme) {
root = new TagNode(r oot Nane) ;
current = root;

}

public void addBel owm(String child) {
TagNode chi | dNode = new TagNode(chil d);
current. add(chil dNode) ;
current = chil dNode;

}

public String toString() {
return root.toString();

}

}

Next | must enable the XMLBuUi | der to add a node at the same level as an existing node (i.e., not
asachild, but asasibling). Thisleadsto moretest and XM_Bui | der code:

public void testAddBeside() {
String expected =
"<orders>" +
"<order>" +
"<item" +
"<[item" +
"<itemp" +
"</itemp" +
"</ order>" +
"</ orders>";
XM_Bui | der buil der = new XM.Bui | der ("orders");
bui | der. addBel ow(" order");
bui | der. addBel ow("itent);
bui | der. addBesi de("itent);
assert XM_LEqual s("addi ng besi de", expected, builder.toString());

}

public class XM.Builder {
private TagNode root;

Page 37 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

private TagNode current;

private TagNode parent;

public XM.Buil der(String root Nane) {
root = new TagNode(r oot Nane) ;
current = root;
parent = root;

}

public void addBel owm(String child) {
TagNode chi | dNode = new TagNode(chil d);
current. add(chil dNode) ;
parent = current;
current = chil dNode;

}

public void addBeside(String sibling) {
TagNode si bl i ngNode = new TagNode(si bling);
par ent . add(si bl i ngNode) ;
current = siblingNode;

}

public String toString() {
return root.toString();

}

}

| continue on this approach until 1 have a working Builder that satisfies al of my tests. In some
cases, adding new behavior to the XMLBui | der istrivial, since it merely requires delegating calls
to the inner Composite. For example, hereis how XML attributes are implemented:

public void test AddBel owWthAttri bute() {
String expected =
"<orders>" +
"<order nunber='12345" quantity='2'">" +
"</ order>" +
"</ orders>";
bui | der = createBuil der("orders");
bui | der. addBel ow("order");
bui | der. addAttri bute("nunber”, "12345");
bui | der.addAttribute("quantity", "2");
assert XMLEqual s("built xm ", expected, builder.toString());
}

public class XM.Builder. . .
public void addAttribute(String name, String value) {
current. addAttri but e(nane, val ue);
}

}

4. Now it is time to replace the original client code that used the Composite with the
XMLBUi | der . | do thisoneline at atime, removing some lines and rewriting others. The final code
makes no references to the now encapsulated Composite, TagNode.

XMLBui | der orders = new XM.Buil der("orders");
orders. addBel ow("order");
orders. addAttri bute("nunber", "123");
orders. addBel owm("i tent);
orders. addAttri bute("nunber", "x1786");
orders. addVal ue("car Door");

Notice how the calls to the XM_Bui | der are generic — the methods and data passed to them
reveal nothing about the underlying structure of the tree. Should we need to work with a variety
of Builders, we won't have to change very much client code.

Extended Example

| could not resist telling you about a performance improvement that was made to the above-
mentioned XM_Bui | der class, since it reveals the elegance and simplicity of the Builder pattern.
Some of my colleagues at a company called Evant had done some profiling of our system and
they'd found that a StringBuffer used by the XM.Buil der’s encapsulated composite

Page 38 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

(TagNode) was causing performance problems. This Stri ngBuffer is used as a Collecting
Parameter — it is created and then passed to every node in a composite of TagNodes in order to
produce the results returned from calling TagNode’s toString(). (To see how this works, see the
example in Move Accumulation to Collecting Parameter).

The StringBuf fer that was being used in this operation was not instantiated with any
particular size, which means that as more and more XML is added to the StringBuffer, it must
automatically grow when it can no longer hold all itsdata. That’s fine, sincethe St ri ngBuf f er
class was written to be able to automatically grow. But there is a performance penalty one pays
when you allow a St ri ngBuf f er to automaticaly grow: i.e. when it has to grow, it has work to
do to transparently increase its size. That performance penaty in the Evant system was not
acceptable and so the team needed to make an improvement.

The solution was to know what size the St ri ngBuf f er needed to be before instantiating it,
and then to ingtantiate it with the proper size so that it would not need to grow. How could we
compute this size? Easy. As each node gets added to an XML tree viaan XM.Bui | der, the
builder increments a buffer size based on the size of the strings in the node. Then the fina
computed buffer size could be used when instantiating the St ri ngBuf f er. Let’s see how this
was implemented.

Asusual, we start by writing atest. The test below will build an XML tree by making calls to
an XMLBui | der , then it will obtain the size of the resulting XML string returned by the builder
and findly, it will compare the size of the string with the computed buffer size for use by a
StringBuffer:

public void testToStringBufferSize() {
String expected =
"<orders>" +
"<order nunber='123">" +
"</ order>" +
"</ orders>";
bui | der = createBuil der("orders");
bui | der. addBel ow("order");
bui | der. addAttri bute("nunber”, "123");

int stringSize = builder.toString().length();
int computedSi ze = ((XMBuil der)buil der).bufferSize();
assert Equal s("buffer size", stringSize, conputedSize);

}

To passthistest and otherslike it, the following XM_LBui | der attributes and methods were added
or updated:

public class XM.Buil der {
private int outputBufferSize;
private static int TAG CHARS SIZE = 5;
private static int ATTRI BUTE _CHARS Sl ZE = 4;

public void addAttribute(String name, String value) {
/1 logic for adding an attribute to a tag
i ncrement Buf f er Si zeByAttri but eLengt h(nanme, val ue);

}

public void addBel owm(String child) {
/1 logic for adding a Tag bel ow anot her Tag
i ncrement Buf f er Si zeByTagLengt h(chi |l d);

}

public void addBeside(String sibling) {
/1 logic for adding a Tag besi de another Tag
i ncrement Buf f er Si zeByTagLengt h(si bl ing);

public void addBesi deParent (String uncle) {
/1 logic for adding a Tag beside the current Tag' s parent
i ncrenent Buf f er Si zeByTagLengt h(uncl e) ;

}
public void addVal ue(String val ue) {
/1 logic for adding a value to a node
i ncrenent Buf f er Si zeByVal ueLengt h(val ue);

Page 39 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

public int bufferSize() {
return outputBufferSize;

}

private void increnmentBufferSizeByAttri buteLength(String name, String value) {
out put Buf ferSi ze += (nane.length() + value.length() + ATTRI BUTE_CHARS_SI ZE);
}

private void increnmentBufferSi zeByTagLength(String tag) {
int sizeO OpenAndd oseTags = tag.length() * 2;
out put Buf fer Si ze += (sizeO OpenAndd oseTags + TAG CHARS S| ZE) ;

}

private void increnentBufferSizeByVal ueLength(String val ue) {
out put Buf fer Si ze += val ue. |l ength();
}

protected void init(String rootNanme) {
/1 logic for initializing the builder and root node
out put Buf fer Si ze = 0;
i ncrenent Buf f er Si zeByTagLengt h(r oot Nane) ;

The changes made to the XM_Bui | der are transparent to the users of the builder, as it
encapsulates this new performance logic. The only additional change must be made to the
XMLBui | der’ s toString() method, so that it can instantiate a St ri ngBuf f er of the correct
size, and passit on to the root TagNode, which will accumulate the contents of the XML tree. To
make that happen, thet oSt ri ng() method was changed from

public String toString() {
return root.toString();
}

to:

public String toString() {
return root.toStringHel per (new StringBuffer(outputBufferSize));
}

And that wasit. The tests passed and the XMLBui | der was now significantly faster.

Page 40 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Extract Special-Case Logic into Decorators

Y our classes or methods have
optional or special-case processing logic

Retain core logic but extract optional or
special-case logic into Decorators

CarRental
public float calcPrice() {

+float() : calcPrice - float price = (model.price * days);
+getDaysRented() : int \\\‘“\——\\\ if (hasinsurance)
+getModel() : Model T price += insuranceAmount();
+getFuelConsumed() : float if (ha_sRefEeIOnRetgrn))
+setFuelConsumed(amount : float) : void price += ll’efueIPrlce(),
+setlnsurance(rate : float) : void return price;
+setRefuelOnReturn(pricePerGallon : float) : void }

2

«Interface»
Rental

+calcPrice() : float
+getDaysRented() : int 1
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

A

CarRental CarRentalDecorator

#rental : Rental

+calcPrice() : float +calcPrice() : float
+getDaysRented() : int +getDaysRented() : int
+getFuelConsumed() : float +getFuelConsumed() : float
+setFuelConsumed(amount : float) : void +setFuelConsumed(amount : float) : void
+getModel() : Model +getModel() : Model
Insurance RefuelOnReturn
-insuranceAmount() : float -refuelPrice() : float
+calcPrice() : float +calcPrice() : float

public float calcPrice() {
return rental.calcPrice() + insuranceAmount();
}

Page 41 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

Decorator is one of my favorite Patterns. It is simple and elegant, but | have to resist
overusing it. Thefact is, many problem chunks of code simply don’t need to be refactored to use
Decorator. Simpler solutions are often better. However, there is a time and place for this
refactoring, and when you do use it to solve the right problems, it can add a great dea of clarity
and simplicity to your design.

So what are the types of problems that merit this refactoring? Glad you asked. Let’slook at
an example. Consider an Invoice class that is responsible for keeping track of payment
information for a customer invoice. Most invoices are simple - some dollar amount is owed, and
all the Invoice object hasto do is calculate the amount owed. But what happens when the amount
owed is overdue or if a specia discount must be applied because the customer is a preferred
customer? Those are two special conditions that the Invoice’'s cal cAnount Oared() method will
have to deal with. No big deal — we probably still don’t need a fancy Decorator to clean up the
small amount of conditional logic in Invoice' s cal cAmount Oned() method.

But what happens when we add more specia conditions to cal cAmount Oned() ? As more
special conditions are added, the Invoice class gets more complex: it holds onto more instance
variables, it supports more getter and setter methods for handling special conditions and its
calculation logic gets longer and more involved.

So now we have a more complex Invoice class. Do we need it? What happens if you
observe that most of the time the system needs to work with the simplest of Invoice objects — no
special conditions, just a simple dollar amount that some customer owes. There are a few places
in the system where the specia conditions are needed, but not many. So why mix this some-of-
the-time logic with your core logic? Keeping this logic together just makes your class more
heavyweight, harder to understand and harder to maintain. This is good reason to refactor to
Decorator.

What are other conditions under which this refactoring makes sense? Say your codeis calling
special methods on related objects, but you'd redlly like to have your code talk to one method on
a common interface and handle the specia stuff behind the scenes. Essentialy, you are trying to
make your processing logic polymorphic. So this may be a good place to refactor to Decorator,
but maybe not. If you can remove al of the client calls to special methods and replace them with
a single intention-revealing method, your code will be simpler and easier to understand. But
what will you have to implement to make this possible?

There is some work involved in implementing this refactoring. In Java, refactoring to
Decorator involves creating a Decorator class and special-purpose concrete Decorator subclasses
as well as producing instantiation code that will wrap objects with the appropriate Decorator(s).
Thisisafair amount of work. It will make sense to do this only if you have more than one or two
chunks of specia behavior and/or you can really simplify your design with this refactoring.

Communication

Duplication

Simplicity

Some code just doesn't have to
be run very often. But if you
lump that code in with code that
does have to be run often, you
don't communicate what is and
what is not important.
Decorators give you a way to
communicate what is core code
from what is optional.

As logic gets more complicated,
you often see code that tries to
accommodate many
combinations of behavior. This
can lead to a lot of duplicate
code. Decorators offer a better
way to handle diverse
combinations of behavior without
duplicating code.

Code that mixes together the
essential with the optional isn’t
as simple as code that contains
solely what is essential. On the
other hand, Decorators aren't
always simple to use when you
have to worry about the order in
which you add them.

Page 42 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

10.

Mechanics

On some class (we'll call it “A™) find an algorithm that is bulky with optional or special-
case processing logic. Choose a piece of logic to extract.

Create an interface (we'll call it “1A™) composed of all of A’s public methods and make
A implement that interface.

Create a class that implements the IA interface and name this class after the optiona or
special-case logic you chose. This will be your first concrete Decorator.

Don’'t worry about creating an abstract Decorator at this point. Abstract Decorators are
only needed when you have multiple concrete Decorators that need to share part of their
implementation.

In your new Decorator, create an instance variable of type IA (we'll cdl it “delegate”)
and let users set it from a constructor argument.

For each method defined by your Decorator, forward each method cal to the same
method on del egate.

Test that your Decorator works: create a new instance of A, decorate it with an instance
of your new Decorator and assert that it works just like an instance of A.

Now move the piece of logic you chose in step 1 to your new Decorator. This step may
require you to make changes to IA and A that let the moved logic function without
duplication of state or behavior.

Test that your Decorator still works: create an instance of A, decorator it with an instance
of your Decorator and assert that it works just like an instance of A.

Repeat for any other Decorators you would like to create. As you do this, it is best to
factor out common Decorator code into an abstract Decorator class. As soon as you have
created more than one Decorator, test that decorating objects with multiple Decorators
work.

You have to be very careful with supporting multiple Decorators. It is best to have
Decorators be so independent of each other that they can be added to objects in any
combination. In practice, however, that may not be possible, in which case you can write
Creation Methods to give access to objects decorated in various ways.

Adjust client code to refer to IA instead of A, and decorate instances of A where
necessary.

Example

If you've ever rented a car, you know that you can rent different types of cars with different rental
options, such as an insurance or no-insurance option, a refuel or no-refuel option, one driver or
additional drivers, limited miles or unlimited miles and so forth.

WEe'll be looking at a Car Rent al class that can handle just two rental options: insurance
and the refuel option. We'll be refactoring this code to use Decorator to show how this
refactoring is done. However, if you carefully study the Before Code, you may wonder if the code
is complicated enough to justify this refactoring. In my opinion, it isn’'t. I'd prefer if the Before

Page 43 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Code were harder to follow, perhaps having to handle 3 or more rental options, which could be
combined in different ways. But if the example contained al of that code, it might span 5 pages
of code. So please use your imagination and consider that CarRental is more complex thanitisin
this example.

1. We begin with the Car Rent al classand it'scal cPri ce() method. The optional or special-
caselogicfromcal cPri ce() ishighlighted in bold:

class CarRental {
protected float fuel Consuned;
protected int days;
protected Mdbdel nodel;
protected float insuranceRate;
protected bool ean hasl nsurance;
protect ed bool ean hasRef uel OnRet ur n;
protected float refuel Price;

public CarRental (Mbodel m int rental Days) {
nmodel = m
days = rental Days;
hasl nsurance = fal se;
hasRef uel OnReturn = fal se;

public float calcPrice() {
float price = (nodel.price * days);
i f (hasl nsurance)
price += insuranceAnount();
if (hasRefuel OnRet urn)
price += refuel Price();
return price;
}
public int getDaysRented() {
return days;

}
public Model getMdel () {
return nodel ;

}
public float getFuel Consuned() {
return fuel Consuned;

public void set Fuel Consuned(fl oat anmount) {
fuel Consuned = anount;

private float insuranceAnount () {
return insuranceRate * getDaysRented();

public void setlnsurance(float rate) {
insuranceRate = rate;
hasl nsurance = true;

private float refuel Price() {
return(get Mbdel (). fuel Capacity - getFuel Consunmed()) * refuel Price;

}

public void setRefuel OnReturn(float pricePerGallon) {
refuel Price = pricePer@Gll on;
hasRef uel OnReturn = true;

}

cl ass Model {
public float fuel Capacity;
public float price;
public String nane,;

public Model (float fuel Capacity, float price, String nane) {
this.fuel Capacity = fuel Capacity;
this.price = price;
thi s. name = nane,

Page 44 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

In CarRental’s cal cPri ce() method you can see that the algorithm handles cases in which
arental car has insurance or the refuel on return option or both. Below, | show how 3 different
CarRenta instances may be created: one that uses none of the special options, one that uses
insurance and one that uses both insurance and the refuel option:

Model m = new Mddel (10. 0f, 50.0f, "Ford Taurus");
CarRental rl = new CarRental(m 5);
assert(rl.cal cPrice() == 250.0f);

CarRental r2 = new CarRental (m 5);
r2.setlnsurance(12.5f);
assert(r2.calcPrice() == 312.5f);

CarRental r3 = new CarRental (m 5);
r3.setlnsurance(12. 5f);

r 3. set Ref uel OnRet ur n(3. 75f);
assert(r3.calcPrice() == 350.0f);

We will see how the above client code changes after we do the refactoring. Our task now is
to choose which piece of special-case logic we want to extract from CarRental’s cal cPri ce()
method. | will choose the insurance option.

2. Now | must create a common interface to be implemented by the CarRental class and any new
Decorators that we create. Thisinterface must be composed of all of CarRenta’ s public methods,
since we want existing client code to communicate with CarRental instances (or decorated
CarRental instances) using this new interface. After creating the interface, we make CarRental
implement it:

interface Rental {
public float cal cPrice();
public int getDaysRented();
public Model getMdel ();
public float getFuel Consuned();
public void setFuel Consuned(fl oat anmount);
public void setlnsurance(float rate);
public void setRefuel OnReturn(fl oat pricePerGallon);

}

class CarRental inplenments Rental.

3. Next, I'll create a concrete Decorator called Insurance. The Insurance Decorator will be used
to add an insurance option to CarRental instances. |nsurance will aso implement the Rental
interface:

class Insurance inplenents Rental {
public float calcPrice() {}
public int getDaysRented() {}
public Model getMdel () {}
public float getFuel Consuned() {}
public void set Fuel Consuned(float amount) {}
public void setlnsurance(float rate) {}
public void setRefuel OnReturn(float pricePerGallon) {}

}

4. The next step isto give Insurance a Rental instance variable and let users set that instance from
aconstructor:

class Insurance inplenments Rental.
private Rental rental;
public Insurance(Rental rental) {
this.rental = rental;
}

5. Now, each of Insurance's methods will forward their method cals to the rental instance
variable:

Page 45 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

class Insurance inplenents Rental {
private Rental rental;
public Insurance(Rental rental) {
this.rental = rental;

public float calcPrice() {
return rental.cal cPrice();

}
public int getDaysRented() {
return rental . get DaysRented();

}
public Mdel getMdel () {
return rental . get Mbdel ();

}
public float getFuel Consunmed() {
return rental . get Fuel Consuned();

public void setFuel Consuned(float amount) {
rental . set Fuel Consunmed(anount) ;

public void setlnsurance(float rate) {
rental . setlnsurance(rate);

public void setRefuel OnReturn(fl oat pricePerGallon) {
rental . set Ref uel OnRet urn(pri cePer Gal | on) ;
}

6. I'll now test that the Insurance Decorator works;

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");
Rental ford = new CarRental (m 5);

ford. setlnsurance(12.5f);

int fordPrice = ford.calcPrice();

Rental insuredFord = new I nsurance(new CarRental (m 5));
i nsuredFord. set | nsurance(12. 5f);

int insuredFordPrice = insuredFord.calcPrice();

assert (fordPrice == insuredFordPrice);

7. Next, | move the insurance logic from CarRenta’s cal cPri ce() method and place it in the
Insurance Decorator. This involves moving insurance-related variables and methods from
CarRental to Insurance. It also provides an opportunity for simplifying the Rental interface, since
CarRenta’s set I nsurance(float rate) method can be replaced by an insuranceRate
parameter being passed to an Insurance constructor:

interface Rental {
public float calcPrice();
public int getDaysRented();
public Model getMdel ();
public float getFuel Consuned();
public void setFuel Consuned(fl oat anmpunt);

public void setlnsurance(float rate);
public void setRefuel OnReturn(fl oat pricePerGallon);

}
class CarRental inplenents Rental {
protected-boolean—haslnsurance;-
public CarRental (Model m int rental Days) {
nodel = m

days = rental Days;
hasRef uel OnReturn = l"al se;

public float calcPrice() {
float price = (nodel.price * days);

; e ;
Page 46 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

if (hasRefuel OnReturn)
price += refuel Price();
return price;

+
. id ¢ E
insuranceRate—=—rate;-
haslnsurance——=true-

Moving insurance logic to the Insurance Decorator involves:

* replacingtheset | nsurance(fl oat rate) method with aconstructor argument

e creating an instance variable, called r at e, to hold the insurance amount

» creating a copy of the old CarRental method, i nsur anceAmount ()

e updating the cal cPrice() method to add the computed insurance amount to the rate
computed by the delegate variable, rental.

class Insurance inplenments Rental {
private float rate;
private Rental rental;

public I nsurance(Rental rental, float insuranceRate) {
this.rental = rental;
rate = insuranceRate;

}

private float insuranceAnount() {
return rate * rental.get DaysRented();

public float calcPrice() {
return rental.calcPrice() + insuranceAnount();

P
publ-c—voi-d-settnsurance{float—rate){
+

}

8. | now test the Insurance Decorator:

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");

Rent al insuredFord = new | nsurance(new CarRental (m 5), 12.5f);
float insuredFordPrice = insuredFord.cal cPrice();

assert (i nsuredFordPrice == 312.5f);

9. | repeat the above steps to turn CarRenta’s refueling rental option into a Decorator. This
further simplifies the CarRental class, which can now be decorated when necessary. In the code
below, you can see the reduction of CarRental’ s responsihilities by looking at the reduction of its
public methods and the size of its cal cPri ce() method. In addition, since we now have two
Decorators, it makes sense to factor out common behavior into an abstract Decorator superclass.

interface Rental {
public float calcPrice();
public int getDaysRented();
public float getFuel Consuned();
public void setFuel Consuned(fl oat anmpunt);
publ i c Model get Model ();

}

cl ass CarRental Decorator inplenents Rental {
protected Rental rental;
protected CarRental Decorator(Rental r) {
rental = r;

public float calcPrice() {

Page 47 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
return rental.calcPrice();

}
public int getDaysRented() {
return rental . get DaysRented();

}

public float getFuel Consuned() {
return rental . get Fuel Consuned();

}

public void setFuel Consuned(fl oat amount) {
rental . set Fuel Consunmed(anount) ;

}

public Mdel getMdel () {
return rental . get Mbdel ();

}

}

cl ass | nsurance extends CarRental Decorator {
protected float rate;

public Insurance(Rental r, float rate) {
super(r);
this.rate = rate;

private float insuranceAnount() {
return rate * rental.get DaysRented();

public float calcPrice() {
return rental.calcPrice() + insuranceAnount();
}

}

cl ass Refuel OnReturn extends Car Rental Decorator {
private float refuel Price;
public Refuel OnReturn(Rental r, float refuel Price) {
super(r);
this.refuel Price = refuel Price;

private float refuel Price() {
return(rental.get Mbdel ().fuel Capacity - rental.get Fuel Consuned()) * refuel Price;

public float calcPrice() {
return rental.calcPrice() + refuel Price();
}

We must now test that multiple CarRental Decorators work. Here's how:

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");

Rent al i nsuredFord = new | nsurance(new CarRental (m 5), 12.5f);
Rent al refuel | nsuredFord = new Refuel OnRet urn(i nsuredFord, 3.75f);
float price = refuel I nsuredFord. cal cPrice();

assert (price == 350.0f);

Rent al refuel Ford = new Refuel OnRet urn(new CarRental (m 5), 3.75f);
Rent al insuredRefuel Ford = new I nsurance(refuel Ford, 12.5f);

float price = insuredRefuel Ford. cal cPrice();
assert (i nsuredFordPrice == 350.0f);

10. We change client code that looked like this:

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");
CarRental rl = new CarRental (m 5);
r2.setlnsurance(12. 5f);

to code that looks like this;

Mbodel m = new Model (10. 0f, 50.0f, "Ford Taurus");
Rental r1l = new | nsurance(new CarRental (m 5), 12.5f);

The refactored version of CarRental came out to be 34 lines longer than the original code. That
may or may not happen when you do this refactoring — it al depends on the kind of code you'll

Page 48 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

be replacing with Decorator. If it is complex conditional code, chances are that adding Decorator
may decrease the lines of code. But in any event, introducing Decorator into your system should
make your code simpler and easier to understand. It may even help you reduce duplication if
your code must handle numerous special-case combinations of behavior.

Let me finish by repeating what | said at the beginning of this refactoring: please don’t overuse
the Decorator pattern. If you'd like to see an excellent example of using Decorator in a design,
study the Decorator code in the extensions package of the JUnit testing framework
(http://www.junit.org).

Page 49 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Hard-Coded Notifications with Observer*

Y our class or numerous subclasses perform
custom object notifications at designated times

Replace your custom notification code

TestResult

+addError(...)
+addFailure(...)

+run(...)
N

with the Observer pattern

SwingUITestResult

TextTestResult

-fRunner : TestRunner

UlTestResult

+addError(...)
+addFailure(...)

+addError(...)
+addFailure(...)

-fRunner : TestRunner

«Instantiates»

<<Instaﬁtiates>>

+addError(...)
+addFailure(...)

«l nstar;ﬁtiates»

swingui.TestRunner

textui.TestRunner

ui.TestRunner

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

TestResult

2

0

TestListener

-Vector fListeners

+addListener(:TestListener)
+addError(...)
+addFailure(...)

+run(...)

+addError(...)
+addFailure(...)

7

swingui.TestRunner

textui.TestRunner

ui.TestRunner

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

Page 50 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

The Observer pattern is popular. Many programmers know it well and use it often. But the
trick isto learn when you actually need to use Observer and when you don’t.

Consider under what circumstances the authors of Design Patterns suggest using Observer
(see Design Patterns, page 294):

* When an abstraction has two aspects, one dependent on the other. Encapsulating these
aspects in separate objects lets you vary and reuse them independently.

» When a change to one object requires changing others, and you don’t know how many
objects need to be changed.

* When an object should be able to notify other objects without making assumptions about
who these objects are. In other words, you don’t want these objects tightly coupled.

Now, what happens when you do know the object you want to update and it isn’'t necessarily
to have loose coupling with that object? For example, class A needs to update objects of type B,
based on some event. Since this is a notification responsibility, you may want to implement a
solution using the Observer pattern (or Java's Listeners -- essentially the same idea). But do you
really need to go that far? Could Observer be too heavyweight a solution given this example?
What if you simply wrote code in class A that would notify B objects at appropriate times?

Certainly that could work just fine, until objects of type C aso need to be notified about A’s
events. You could then experiment with your code. See if adding more hard-coded notification
logic in class A overcomplicates the class. If it doesn't, you've solved your immediate need
without writing much new code.

Eventually, class A’s notification responsibilities may grow. As the responsihilities grow,
you must observe your own interactions with the code. Ask yourself questions like:

« Aml| finding duplicate notification code?

e Am/ creating relatively dumb subclasses just to satisfy new notification needs?

* Ismy notification logic becoming too complex?

» Isit awkward to passin object referencesto class A just for the purpose of notification?

The answers to these questions may lead you to refactor to Observer. Doing so should lead to
simpler, smaller and easier-to-read code. Just remember that once you do decide to refactor to
Observer, try to do so in the simplest way possible. For example, if your observers will never
need to stop getting notifications, do not write the removeObserver() code on your Subject class -
- it would only be wasted code that no one uses.

Communication
Hard-coded object notifications

Duplication
If you are compelled to write

Simplicity

A few runtime object notifications

enable runtime collaborations,
but the code doesn’t
communicate this very well:
objects get passed into
constructors, and notifications
happen in random methods.
Compatre this to a class that
implements the Observer pattern
— both who can observe its
events and when they get
notified is clearly communicated
in the class declaration.

special code for every class that
must be notified at runtime, you
can easily produce more code
than you need, perhaps resulting
in parallel or near-parallel class
hierarchies. For only a few
notifications, this is no big deal.
But as you add more and more
special notification code,
duplication and code bloat take
over.

can be easily handled with
simple custom code. But when
the number of notifications
increases, lots of special code
will be written or more and more
subclasses will be produced to
obtain the necessary behavior.
At that point, your code can be
simplified by using the Observer
pattern.

Page 51 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Mechanics

1. ldentify a Subject: a class that accepts an object reference and contains hard-coded
notification instructions that coupleit directly to the object reference type.

2. Define an Observer: an interface that consists of the set of public methods called by the
Subject on the referenced object.

3. Add to the Subject an Observers list and a way for clients to add to that list via a public
addObserver(Observer 0) method. Add a corresponding removeObserver(Observer o)
method only if oneis needed.

4. For code in the Subject that accepted an object reference and directly notified that
reference, replace with code that iterates over Subject’'s Observer list, updating each
Observer instance.

5. For any class that needs to get notified by Subject, make it implement the Observer
interface.

6. Replace code that passed in an object reference to the Subject with code that registers that
object reference as an Observer of the Subject. You'll use Subject's
addObserver(Observer 0) method for this purpose.

7. Compile and test.

Example

The code sketch above is from Kent Beck and Erich Gamma' s JUnit Testing Framework. Prior to
JUnit 3.x, the authors defined specific TestResult subclasses (like Ul TestResult, SwingTestResult
and TextTestResult) that were responsible for gathering up test information and reporting it to
TestRunners. Each TestResult subclass was coupled to a specific TestRunner, such as an AWT
TestRunner, Swing TestRunner or Text-based TestRunner. At runtime, after creating a
TestResult subclass, a TestRunner would pass itself in as a reference to that TestResult, and then
wait to be notified by the TestResult. Each TestResult subclass was hard-coded this way to talk
with a specific TestRunner, and that is where our refactoring begins.

In JUnit 3.1, Kent and Erich refactored the TestResult/TestRunner code to use the Observer
pattern. This enabled them to eliminate all of the special TestResult subclasses (Ul TestResult,
SwingTestResult and TextTestResult) and simplify each of the concrete TestRunners.

Our example will look at this real-world refactoring of the JUnit framework. I’ ve deliberately
simplified some of the JUnit code in order to concentrate on the refactoring, not the inner
workings of JUnit. However, if you want to study the JUnit code (which | highly recommend),
you can download it at http://www.junit.org.

1. Our first task isto find a Subject. In this case, the UlITestResult class will be our Subject, but
later our Subject will become the TestResult class. What is the reason for this? Wedll, as a
subclass of TestResult, UlTestResult doesn’t add much new behavior: it exists only because it has
the ability to talk directly to an AWT TestRunner class. Our refactoring will seek to eiminate
UlTestResult and move its behavior up to the TestResult class.

Let'slook at the code for all three classes, minus some details you don’t need to worry about.
I highlight in bold the coupling between Ul TestResult and its AWT TestRunner:

package junit.framework;
public class TestResult extends Object {
protected Vector fFailures;

Page 52 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public TestResult() {
f Fai |l ures= new Vector (10);
}

public synchroni zed void addFail ure(Test test, Throwable t) {
f Fai | ures. addEl enent (new Test Fai lure(test, t));

public synchroni zed Enuneration failures() {
return fFailures. el ements();

protected void run(TestCase test) {
start Test(test);

try {
test.runBare();

catch (AssertionFail edError e) {
addFai l ure(test, e);

}
endTest (test);

}

package junit.ui;
class U Test Result extends TestResult {
private Test Runner fRunner;
Ul Test Resul t (Test Runner runner) {
f Runner = runner;
}

public synchroni zed void addFailure(Test test, Throwable t) {
super. addFailure(test, t);
f Runner . addFai l ure(this, test, t);

}

package junit.ui;
public class TestRunner extends Franme {
private TestResult fTestResult;

protected TestResult createTest Resul t (Test Runner runner) {
return new Ul Test Resul t (Test Runner. this);
}

synchroni zed public void runSuite() {

fTest Result = createTestResult(Test Runner.this);
testSuite.run(fTestResult);

public void addFailure(TestResult result, Test test, Throwable t) {
f Nunber Of Fai | ures. set Text (I nteger.toString(result.testFailures()));
appendFai l ure("Failure", test, t);

}
2. Our next task isto define an Observer interface. Kent and Erich call thisa TestListener:

package junit.framework;

public interface TestListener {
public void addError(Test test, Throwable t);
public void addFail ure(Test test, Throwable t);
public void endTest (Test test);
public void startTest(Test test);

}

3. We must now add a list of Observers to our Subject and provide clients (that implement the
Observer interface) away to add themselves to thislist. We do this work on the TestResult class
rather than the Ul TestResult class, which we hope to eliminate:

public class TestResult extends Object {
protected Vector fFailures;
protected Vector fListeners;
public TestResult() {
f Fai l ures= new Vector();
fLi steners= new Vector();

Page 53 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public synchroni zed voi d addLi stener(TestListener listener) {
fLi steners. addEl enent (| i stener);
}

}

4. Now we need to make our Subject update its Observers when an event happens. Thisinvolves
refactoring TestResult methods like addFailure(), addError() and so on. For simplicity, we will
examine only how addFailure() is refactored. Here's what the original method looked like on
Ul TestResult:

class U TestResult. . .
public synchroni zed void addFail ure(Test test, Throwable t) {
super. addFailure(test, t);
f Runner . addFai l ure(this, test, t);

}

Rather than refactor UlTestResult's addFailure() method, we focus on the same method in
TestResult, the superclass. TestResult’s addFailure method will continue to do what it used to do,
but it will now iterate through its registered Observers, calling each one’' s addFailure() method. In
this context, since Observers are usually TestRunners, this code will inform each registered
TestRunner that a failure has been added. When that happens, the TestRunners have a chance to
do things like update a GUI to reflect just how many test failures have occurred. Here's what
TestResult’ s refactored addFailure() method looks like:

class TestResult. . .
public synchroni zed void addFail ure(Test test, AssertionFailedError t) {
f Fai | ures. addEl enent (new Test Fai lure(test, t));
for (Enuneration e= clonelListeners().elenents(); e.hasMreEl enents();) {
((TestListener)e.nextEl enent()).addFailure(test, t);
}

}

5. Now, in order for the AWT TestRunner to register itself as an Observer of a TestResult, we
must make the ui.TestRunner class implement the TestListener interface:

package junit.ui;
public class TestRunner extends Object inplenents TestListener . . .

6. Thefinal step isto register the Observer with the Subject of choice. In this case, we'll ook at
the code that registers the ui.TestRunner with a TestResult instance:

package junit.ui;

public class TestRunner extends Object inplenents TestlListener {
private Vector fFailedTests;
private TestResult fTestResult;

protected TestResult createTestResult() {
return new TestResult();
}

synchroni zed public void runSuite() {
fTestResult = createTestResult();
f Test Resul t. addLi st ener (Test Runner. this);

}

7. Finaly, we can now compile and test that our refactored ui.TestRunner and TestResult work
together the way we expect. In the real world, Kent and Erich refactored al of the TestResult
subclasses and TestRunners to use the Observer pattern.

Page 54 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Move Accumulation to Collecting Parameter*

Y ou have a single bulky method
that accumulates information to avariable

Accumulate your result to a Collecting Parameter
that you pass to extracted methods.

class TagNode. . .
public String toString() {
String result = new String();
result +="<" + tagName + " " + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

if (ItagValue.equals("™))

result += tagValue;
result +="</" + tagName + ">";
return result;

class TagNode. . .
public String toString() {
return toStringHelper(new StringBuffer(""));

}

private String toStringHelper(StringBuffer result) {
writeOpenTagTo(result);
writeChildrenTo(result);
writeEndTagTo(result);
return result.toString();

}

Motivation

Kent Beck defined the Collecting Parameter pattern in his classic book, Smalltalk Best
Practice Patterns. A Collecting Parameter is an object that you pass to methods in order to collect
information from those methods. A good reason to use this pattern is when you want to
decompose a bulky method into smaller methods (using Extract Method [Fowler]), and you need
to accumulate information from each of the extracted methods. Instead of making each of the
extracted methods return a result, which you later combine into a fina result, you can
incrementally accumulate your result by passing a collecting parameter to each of the extract
methods, which in turn, write their results to the collecting parameter.

Collecting Parameter works nicely with the Composite pattern, since you can use a Collecting
Parameter to recursively accumulate information from a Composite structure. Kent Beck and
Erich Gamma combined these two patterns in their JUnit testing framework to enable a single
TestResult object to gather test result information from every test in a hierarchical structure of
test case objects.

| recently combined Collecting Parameter with Composite when | refactored a class's
toString() method (see the code sketch above). My initial goal was to replace a lot of dow
String concatenation code with faster St ri ngBuf f er code, but when | realized that a smple
replacement would generate lots of St ri ngBuf f er instances (because the code is recursive), |
retreated from this approach. Then my programming partner at the time, Don Roberts, seized the
keyboard, saying “I’ve got it, I’ve got it” and then quickly refactored the code to use a single

Page 55 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

StringBuffer as a Collecting Parameter. The resulting code (partially shown in the code
sketch) had a far simpler design, communicated better with the reader and, thanks to the
St ri ngBuf f er , was far more efficient.

Communication Duplication Simplicity

Bulky methods don’t You don't often reduce duplicate | Extract Method is at the heart of
communicate well. Communicate | code using this refactoring. The this refactoring. You use it to
what you are accumulating by only exception would be if you reduce a bulky method into a
placing each step into intention- have different types of Collecting | simpler method that delegates to
revealing methods that write Parameters that can be passed intention-revealing methods.
results to a parameter. into the same methods.

Mechanics

1. ldentify a chunk of code that accumulates information into a variable (we'll call that
variable “result”). Result will become your Collecting Parameter. If result’s type won't
let you iteratively gather data across methods, change result’s type. For example, Java's
String won't let us accumul ate results across methods, so we use a StringBuffer.

2. Find an information accumulation step and extract it into a private method (using Extract
Method [Fowler]). Make the method’ s return type be void and pass it result. Inside the
method, write information to result.

3. Repeat steps 2 for every accumulation step, until the origina code has been replaced with
callsto extracted methods that accept and write to result.

4. Compile and test.

Example

In this example, we will see how to refactor Composite-based code to use a Collecting
Parameter. We'll start with a composite that can model an XML tree (see Replace Primitive Tree
Construction with Composite for a complete example of this XML composite code).

The composite is modeled with a single class, caled TagNode, which has a toString()
method. The toString() method recursively walks the nodes in the XML tree, and produces a
final String representation of what it finds. It does afair amount of work in 11 lines of code. We
will refactor toString() to make it smpler and easier to understand.

1. The following toString() method recursively accumulates information from every tag in a
composite structure and stores resultsin avariable called “result”:

cl ass TagNode. . .
public String toString() {
String result = new String();
result += "<" + tagName + " " + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

}

if (!tagVal ue.equals(""))
result += tagVal ue;

result += "</" + tagName + ">";

return result;

}

| change result’ stype to be a StringBuffer in order to support this refactoring:

StringBuffer result = new StringBuffer("");

Page 56 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

2. | identify the first information accumulation step: code that concatenates an xml open tag along
with any attributes to the result variable. | Extract Method on this code as follows:

result += "<" + tagName + " " + attributes + ">";

is extracted to:

private void witeOpenTagTo(StringBuffer result) {
resul t.append("<");
resul t. append(nane);
result.append(attributes.toString());
resul t.append(">");

}
The original code now looks like this:

StringBuffer result = new StringBuffer("");
writeOpenTagTo(result);

3. Next, | want to continue to extract methods from toString(). | focus on the code that adds
child XML nodes to the result. This code contains a recursive step (which | highlight below in
bold):

cl ass TagNode. . .
public String toString(). . .
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagVal ue.equal s(""))
result += tagVal ue;

}

Since this code makes a recursive call, it isn't so easy to extract into a method. The following
code will show you why:

private void witeChildrenTo(StringBuffer result) {
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
node.toString(result); // can't do this because toString() doesn't take argunents.

}

Since toString() doesn’t take a StringBuffer as an argument | can’'t simply extract the method. |
have to find another solution and | decide to solve the problem using a helper method. This
method will do the work that toString() used to do, but it will take a StringBuffer as a Collecting
Parameter:

public String toString() {
return toStringHel per(new StringBuffer(""));
}

private String toStringHel per(StringBuffer result) {
wri teOpenTagTo(result);

return result.toString();

Page 57 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

With the new toStringHel per() method in place, | can go back to my original task: extracting the
next accumulation step:

private String toStringHel per(StringBuffer result) {
wri teQpenTagTo(result);
writeChildrenTo(result);

return result.toString();
}
private void witeChildrenTo(StringBuffer result) {
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
node.toStringHel per(result); // nowrecursive call will work

if (!value.equals(""))
resul t. append(val ue);

}

As | stare a the wri t eChil drenTo() method, | redlize that it is handling two steps: adding
children recursively and adding a value to a tag, when one exists. To make these two separate
steps stand out, | extract the code for handling a value into its own method:

private void witeVal ueTo(StringBuffer result) {
if (!value.equals(""))
resul t. append(val ue);

}

To finish the refactoring, | extract one more method that writes an XML close tag. Here's what
the final code looks like:

public class TagNode . . .
public String toString() {
return toStringHel per(new StringBuffer(""));

private String toStringHel per(StringBuffer result) {
writeOpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
writeEndTagTo(result);
return result.toString();
}
private void witeOpenTagTo(StringBuffer result) {
resul t.append("<");
resul t. append(nane);
result.append(attributes.toString());
resul t.append(">");
}
private void witeChildrenTo(StringBuffer result) {
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
node. t oSt ri ngHel per (result);
}
}
private void witeValueTo(StringBuffer result) {
if (!value.equals(""))
resul t. append(val ue);
}
private void witeEndTagTo(StringBuffer result) {
resul t.append("</");
resul t. append(nane);
resul t.append(">");

}

Or so | thought that was the final code. An astute reader of the above code pointed out that when
thewri t eChi | drenTo() method recursively callst oSt ri ngHel per (), it isreturned a String,
which it promptly ignores. In other words, the only time that the return result of

Page 58 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

toStringHel per () isusediswhenitiscaled fromthet oSt ri ng() method. This meansthat
the code can be made more efficient as follows:

public String toString() {
StringBuffer result = new StringBuffer("");
toStringHel per(result);
return result.toString();

}

public void toStringHel per(StringBuffer result) {
writeQpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
wri teEndTagTo(result);

}

4.1 compile, run my tests and everything is good.

Example 2

To get a better understanding of the Collecting Parameter pattern, let’s have a look at another
example, which comes from the unit testing framework, JUnit. In JUnit, every test is an object.
Test objects get put into suites, which may be put into more suites, which results in a composite
of tests. To report on how each test performs (did it pass, fail or generate errors?), some object
needs to accumulate and report results as each test in the Composite is executed. TestResult is
that object and it serves the role of Collecting Parameter.

Page 59 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace One/Many Distinctions with Composite

Y ou have separate code for handling
single elements and collections of those elements

Combine the code to handle single
or multiple elements using Composite

public class Product...
protected Vector singleParts = new Vector();
protected Vector collectedParts = new Vector();

public void add(Part part) {
singleParts.addElement(part);

}
public void add(PartSet set) {
collectedParts.addElement(set);

}
public float getPrice() {
float price = 0.0f;
Enumeration e;
for (e=singleParts.elements(); e.hasMoreElements();) {
Part p = (Part)e.nextElement();
price += p.getPrice();
}
for (e=collectedParts.elements(); e.hasMoreElements();) {
PartSet set = (PartSet)e.nextElement();
price += set.getPrice();

}

return price;

}

public class Product...
protected Vector parts = new Vector();

public void add(Part p) {
parts.addElement(p);

}
public float getPrice() {
float price = 0.0f;
for (Enumeration e=parts.elements(); e.hasMoreElements();) {
Part p = (Part)e.nextElement();
price += p.getPrice();

return price;

}

Motivation

A good reason to refactor to Composite isto get rid of code that distinguishes between single
objects and collections of those objects. You may find code that makes these distinctions when
you have a hierarchy of objects, some of which are leaves and some of which are collections of
leaves (or collections of collections). Treating both the leaf objects and the collections identically
isan important goal of Composite.

[I have much more to write in this section]

Page 60 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication

Duplication

Simplicity

If you're performing the same
behavior on single objects or
collections of those objects, it is
useful to communicate this in
your code. But code that
handles the different class types
in separate bits of code doesn't

Make it clear by using the
Composite pattern to treat your
single and multiple objects
uniformly.

communicate this message well.

One of the primary reasons to
refactor to Composite is to
remove duplication. Identify
separate chunks of code that
execute similar behavior on
different class types and
consolidate this code by treating
the objects uniformly via an

interface or common base class.

Having separate code to process
single objects and collections of
objects isn't simple —itis a
symptom of code that is
needlessly complex. Simplify
this code by treating the class
types uniformly via an interface
or common base class.

[to do]

10 rulesin validation
plus 5

only use 8 plus 2 more originals

Mechanics

Example

Page 61 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Compose M ethod**
It isn’t easy to understand your method’ slogic

Transform the logic into a small number of
intention-revealing steps at the same level of detalil

public boolean contains(Component c) {

Point p = c.getLocation();

int locX = new Double(p.getX()).intValue();

int locY = new Double(p.getY()).intValue();

boolean completelyWithin =
(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

if (completelyWithin) return true;

locX = locX+CardComponent. WIDTH,;
locY = locY+CardComponent.HEIGHT;
boolean partiallyWithin =

(locX > coords[0] &&

locY > coords[1] &&

(locX < coords|[2]) &&

(locY < coords[3]));

return partiallyWithin;
}

2

public boolean contains(Component c) {
return completelyWithin(c) || partiallyWithin(c) ;
}

private boolean completelyWithin(Component c) {
Point p = c.getLocation();
return (p.x >= coords[0] &&
p.y >= coords[1] &&
(p.-x + CardComponent.WIDTH) <= coords[2] &&
(p.y + CardComponent.HEIGHT) <= coords[3]);
}

private boolean partiallyWithin(Component c) {
Point p = c.getLocation();
return ((p.x + CardComponent.WIDTH) > coords[0] &&
(p.y + CardComponent.HEIGHT) > coords[1] &&
(p.x + CardComponent.WIDTH) < coords[2] &&
(p.y + CardComponent.HEIGHT) < coords[3]);

Motivation

Kent Beck once said that some of his best patterns are those that he thought someone would

laugh at him for writing. Composed Method [Beck] may be such a pattern. A Composed Method
isasmall, simple method that is easy to understand. Do you write alot of Composed Methods? |
like to think | do, but | often find that | don't, at first. So | have to go back and refactor to this
pattern. When my code has many Composed Methods, it tends to be a easy to use, read and

extend.
This refactoring has two asterisks beside its name because | find myself aggressively

refactoring to it often. For example, just the other day | was debugging a method in some code
I’'m writing. The method, called cont ai ns() , wasn't very complex, but it was complex enough

Page 62 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

that | had to think about how it was doing its job. | knew this method would be easier to debug if
| refactored it first. But my ego wasn't ready for that, just then: | just wanted to get rid of the
bug. So, after writing an automated test to demonstrate the bug, | wrote new code in the
cont ai ns() method to fix the bug. That code didn’t fix the bug and after two more failed
attempts, | was ready to refactor. It wasn't difficult to transform cont ai ns() into a Composed
Method. But after doing so, it was so much easier to follow the logic. And moments after the
refactoring, | found and fixed my bug.

Communication Duplication Simplicity
It may be clear what a method Duplicate code, whether blatant Composed Methods often read
does but not how the method or subtle, clutters a method’s like English. If your method has
does what it does. Make the logic. Remove the duplicationto | too many lines of code, such that
“how” easy to understand by make the code smaller and you can't easily explain how it
clearly communicating every simpler. Doing so often reveals does its job, simplify it by
logical step. You'll often further refactoring opportunities. | extracting logic till it is a
implement part of this refactoring Composed Method.
using Extract Method [Fowler].

Mechanics

This is one of the most important refactorings | know of. Conceptudly, it is also one of the
simplest. So you'd think that this refactoring would lead to a simple set of mechanics. In fact,
just the opposite is the case. While the steps themselves aren’t complex, there is no simple,
repeatable set of these steps. But there are guidelines for refactoring to Composed Method, some
of which include:

» Think Small — Composed Methods are rarely more than 10 lines of code, and are usualy
more like 5.

* Remove Duplication — Reduce the amount of code in the method by getting rid of blatant
and/or subtle code duplication.

e Communicate Intention — do so with the names of your variables and methods, and by
making your code ssimple.

e Smplify —there are many ways to skin a cat. Refactor to the way that is most simple and
that best communicates your intention. Simple methods may not be the most highly
optimized methods. Don’'t worry about that. Make your code simple and optimize it
later.

* Smilar Levels — when you break up one method into chunks of behavior, make the
chunks operate at similar levels. For example, if you have a piece of detailed conditiona
logic mixed in with some high-level method calls, you have code at different levels.
Push the detail into anew or existing high-level chunk.

* Group Related Code — Some code is simply hard to extract into its own method. Y ou can
easily see a way to extract part of the code, but the rest remains in the original method.
You now have code at different levels. In addition, because you have an unnatural split
between related fragments of code, your code is harder to follow. In general, look for
ways to group related code fragments, even if they aren’'t obvious at first.

Let’s now look at three examples of refactoring to Composed Method:

Page 63 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example 1

I'll start with the game example from the code sketch above. We begin with a single bulky
method, called contai ns(), which figures out whether a Component is fully or partially
contained within arectangular area:

publ i c bool ean cont ai ns(Conmponent c¢) {
Point p = c.getlLocation();
int locX = new Doubl e(p.getX()).intValue();
int locY = new Doubl e(p.getY()).intValue();
bool ean conpl etel yWthin =
(locX >= coords[0] &&
locY >= coords[1] &&
(1 ocX+Car dConponent . WDTH) <= coords[2]) &&
(1 ocY+Car dConponent . HEI GHT) <= coords[3] ;
if (conpletelyWthin) return true;

l ocX = | ocX+Car dConponent . W DTH,;
locY = | ocY+Car dConponent . HEl GHT;
bool ean partiallyWthin =

(locX > coords[0] &&

locY > coords[1] &&

(locX < coords[2]) &&

(locY < coords[3]));

return partiall yWthin;

Before we get into the refactoring, let’s look at one of six test methods for the cont ai ns()
method. The following method tests to see if a card isinitialy contained within the first player’'s
play area, then moves the card out of the first player's play area and follows that with another
test:

public void testCardQut O Pl ayAreaOne() {
Hand hand = (Hand) expl anati ons. get Current Pl ayer (). get Hand();
Card card = (Card)hand. el ements(). nextEl ement ();
Car dComponent ¢ = new Car dConponent (car d, expl anati ons) ;
Pl ayer Area area = expl anations. get Pl ayer Area(0);
expl anati ons. noveCard(c, area.upperlLeft());
assert Equal s("area contains card", true, area.contains(c));

expl anati ons. noveCard(c, CardConponent.WDTH + 10, CardConponent. HEl GHT + 10);
assert Equal s("area does not contain card", false, area.contains(c));

The above test, and the other five tests, al pass (or “run green’) before | begin refactoring. |
run these tests after each of the small steps | am about to do below.

To begin, my first impulse is to make the cont ai ns() method smaller. That leads me to
look at the conditional represented by the variable, conpl et el yW t hi n:

bool ean conpletelyWthin =
(locX >= coords[0] &&
locY >= coords[1] &&
(1 ocX+Car dConponent . WDTH) <= coords[2]) &&
(1 ocY+Car dConponent . HEl GHT) <= coords][3] ;

While that variable helps make it clear what the conditional logic does, the cont ai ns()
method would be smaller and easier to read if this fragment were in it's own method. So | start
with an Extract Method:

publ i c bool ean contai ns(Conponent c¢) {
Point p = c.getlLocation();
int 1ocX = new Doubl e(p.getX()).intValue();
int locY = new Doubl e(p.getY()).intValue();
if (completelyWthin(locX, locY)) return true;

| ocX = | ocX+Car dConponent . W DTH,;
Page 64 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

locY = | ocY+Car dConponent . HEl GHT;

bool ean partiallyWthin =
(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

return partiall yWthin;

}

private bool ean conpletelyWthin(int locX, int locY) {
return (locX >= coords[0] &&
locY >= coords[1] &&
(1 ocX+Car dConponent . WDTH) <= coords[2]) &&
(1 ocY+Car dConponent . HEI GHT) <= coords[3] ;
}

Next, after seeing a similar temporary variable, called parti al | yW t hi n, | do another Extract
Method:

publ i c bool ean contai ns(Conmponent c) {
Point p = c.getlLocation();
int 1ocX = new Doubl e(p.getX()).intValue();
int locY = new Doubl e(p.getY()).intValue();
if (completelyWthin(locX, locY)) return true;
l ocX = | ocX+Car dConponent . W DTH,;
l ocY = | ocY+Car dConponent . HEl GHT;
return partiallyWthin(locX, |ocY);

}

private bool ean partiallyWthin(int locX, int locY) {
return (locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

The cont ai ns() method is now smaller and simpler, but it still seems cluttered with
variable assignments. | notice that the assignmentsto | ocX and | ocY are performed simply for
use by the new methods, conpl et el yWt hin() andpartial l yWthin(). | decideto
let those methods deal with the |l ocX and | ocY assignments. The easiest way to do this is to
just passthe Poi nt variable, p, to each of the methods:

publ i c bool ean contai ns(Conponent c¢) {
Point p = c.getLocation();
if (conpletelyWthin(p)) return true;
return partiall yWthin(p);

Now, the cont ai ns() method is really looking smaller and simpler. | feel like I'm done.
But then | look at that first line of code:

Point p = c.getLocation();

The level of that code seems wrong — it is a detail, while the rest of the code in the method
represents core pieces of logic. The two methods I'm calling each need the Poi nt variable. But
each of those methods could easily obtain the Poi nt variableif | just sent them Conponent c. |
consider doing that, but then | worry about violating the rule of doing things once and only once.
For if | passvariable c, the Conponent, to each method, each method will have to contain code
to obtain aPoi nt from c, instead of just getting one passed in directly.

Hmmmm. What is my real goal here? Isit more important to get the levels of the code right
or to say things once and only once? After some reflection, | realize that my goal is to produce a
method that can be read and understood in seconds. But as it stands, that first line of code takes
away from the readability and simplicity of the method. So | push down the code to obtain a
Poi nt into the two called methods and end up with the following:

Page 65 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

publ i c bool ean contai ns(Conponent c¢) {
return conpletelyWthin(c) || partiallyWthin(c);
}

private bool ean conpl et el yWt hi n(Conponent c) {
Point p = c.getlLocation();
int locX = new Doubl e(p. x).intVal ue();
int locY = new Doubl e(p.y).intValue();
return (locX >= coords[0] &&
locY >= coords[1] &&
(l ocX + CardConponent. WDTH) <= coords[2]) &&
(locY + CardConponent. HElI GHT) <= coords[3];

}
private bool ean partiall yWthin(Conponent c) {
Point p = c.getlLocation();
int locX = new Doubl e(p.x).intValue() + CardConponent.W DTH,
int locY = new Doubl e(p.y).intValue() + CardConponent. HEl GHT;
return (locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));
}

Now | think I'm really done. But whenever you think you're really done, you're not. A reviewer
of this refactoring, named Andrew Swan, observed that | was converting p. x and p. y toi nt s,
when they areaready i nt s! So thislead to afurther simplification:

publ i c bool ean cont ai ns(Conmponent c) {
return conpletelyWthin(c) || partiallyWthin(c) ;
}

private bool ean conpl etel yWt hi n(Conponent c) {
Point p = c.getlLocation();
return (p.x >= coords[0] &&
p.y >= coords[1] &&
(p.x + CardComponent. W DTH) <= coords[2] &&
(p.y + CardConponent. HEl GHT) <= coords[3]);

}
private bool ean partial |l yWthin(Conponent c) {

+ Car dConponent. WDTH) > coords[0] &&
Car dConponent . HEI GHT) > coords[1] &&
Car dConponent . WDTH) < coords[2] &&
Car dConponent . HEI GHT) < coords[3]);

TTOTT
< X< x
+ + +

Page 66 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example 2

public static Vector wrap(String s) {
Vector wrapVector = new Vector();
String words;

String word,;
int lastPos;
do {
if (s.length() > 16) {
words="";
word="";
lastPos=0;
for (int i=0;i<16;i++) {
if (s.charAt(i)==""| s.charAt(i)=="-") {
words+=word+s.charAt(i);
lastPos = i+1,;
word="";

} else word+=s.charAt(i);

if (lastPos==0) {
/I Rare case that there was no space or dash, insert one and break
words+=word+"-";
lastPos=16;

}

wrapVector.addElement(words);

s = s.substring(lastPos, s.length());

}
} while (s.length() > 16);
if (s.length()>0) wrapVector.addElement(s);

return wrapVector;

}
public static Vector wrap(StringBuffer cardText) {
Vector wrapLines = new Vector();
while (cardText.length() > 0)
wrapLines.addElement(extractPhraseFrom(cardText));
return wrapLines;

}

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer(");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; iKMAXCHARS; i++) {

addCharacterTo(word, cardText.charAt(i));

if (isCompleteWord(word, cardText))

addCompleteWordTo(phrase, word);

addRemainingWordTo(phrase, word);
removePhraseFrom(cardText, phrase);
return phrase.toString();

}

private static boolean addCharacterTo(StringBuffer word, char character) ...
private static boolean isCompleteWord(StringBuffer word, StringBuffer cardText) ...
private static void addCompleteWordTo(StringBuffer phrase, StringBuffer word) ...
private static void addRemainingWordTo(StringBuffer phrase, StringBuffer word) ...
private static void removePhraseFrom(StringBuffer cardText, StringBuffer phrase)...

In a game I’ ve been writing with a friend, text needs to be displayed on graphical cards. The
text is typicaly too long to fit on one line of each card, so it must be displayed on multiple lines
of each card. To enable this behavior, we test-first programmed awr ap() method. Here are afew
of the tests:

Page 67 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public void accunul ateResult(String testString) {
int i =0;
for (Enuneration e = CardConponent.w ap(testString).elenents();e. hasMoreEl enents();)
result[i++] = (String)e.nextEl enent();

}

public void testWap() {
accunul at eResul t (" Devel opers M sunderstand Requirenents");
assert Equal s("First |ine","Devel opers ",result[0]);
assert Equal s("Second line","M sunderstand ",result[1]);
assert Equal s("Third line","Requirements",result[2]);

}

public void testWap2() {
accunul at eResul t ("Stories Are Too Conpl ex");
assertEqual s("First line","Stories Are Too ",result[0]);
assert Equal s(" Second |ine", " Conpl ex",resul t[1]);

}

public void testWap3() {
accunul at eResul t ("I ntenti on- Reveal i ng Code");
assert Equal s("First line","Intention-",result[0]);
assert Equal s(" Second |ine", "Reveal i ng Code",result[1]);

}
With these tests in place, | can work on refactoring the following bloated method:

public static Vector wap(String s) {
Vector w apVector = new Vector();
String words;

String word;
int |astPos;
do {
if (s.length() > 16) {
wor ds="";
wor d="";
| ast Pos=0;
for (int i=0;i<16;i++) {
if (s.charAt(i)=="" || s.charAt(i)==""-") {
wor ds+=wor d+s. char At (i) ;
| ast Pos = i +1;
wor d="";

} el se word+=s.charAt(i);

}

if (lastPos==0) {
/! Rare case that there was no space or dash, insert one and break
wor ds+=wor d+"-";
| ast Pos=16;

}

wr apVect or . addEl ermrent (wor ds) ;

s = s.substring(lastPos, s.length());

}
} while (s.length() > 16);
if (s.length()>0) wapVector.addEl ement (s);
return w apVector;

Thefirst thing | noticeis that we have some blatant duplicate logic: theline, s. | engt h() > 16,
appears in a conditional statement at line 6 and at the end of the while statement. No good. |
experiment with removing this duplication by using awhi | e loop instead of ado. . whi | e loop.
The tests confirm that the experiment works:

public static Vector wap(String s) {
Vector wrapVector = new Vector();
String words;
String word;
int |astPos;
while (s.length() > 16) {

wor ds="";
wor d="";
| ast Pos=0;
for (int i=0;i<16;i++)
if (s.charAt(i)=="" 1] s.charAt(i)=="-") {

wor ds+=wor d+s. char At (i) ;

Page 68 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

| ast Pos = i +1;
wor d="";
} el se word+=s.charAt(i);
if (lastPos==0) {
/! Rare case that there was no space or dash, insert one and break
wor ds+=wor d+"-";
| ast Pos=16;
}
wr apVect or . addEl emrent (wor ds) ;
s = s.substring(lastPos, s.length());

}
if (s.length()>0) wapVector.addEl ement (s);
return w apVector;

Next | notice more duplication. At two places in the middle of the method, the code says:

wor d+=s. char At (i).

By consolidating thislogic, | see away to simplify a conditional statement:

for (int i=0;i<16;i++) {
wor d+=s. charAt(i); // now we say this only once
if (s.charAt(i)=="" 1] s.charAt(i)=="-") {
wor ds+=wor d;
| ast Pos = i +1;
wor d="";
} /] else statenent is no | onger needed

Additional duplicate logic doesn’t jump out at me just yet, so | continue to look (I know it is
therel). | wonder about the variable, | ast Pos. What does it store? Can | figure out what the
value of | ast Pos would be, without having to declare and set a variable for it? After alittle bit
of study, | try some experiments. Gradually it dawns on me that wor ds. | engt h() contains the
exact value asthat held by | ast Pos. This alows meto get rid of another variable, and all of the

assignmentsto it:

public static Vector wap(String s) {
Vector w apVector = new Vector();
String words;
String word;
while (s.length() > 16) {
wor ds="";
wor d="";
for (int i=0;i<16;i++) {
wor d+=s. char At (i) ;

if (s.charAt(i)==""" || s.charAt(i)=="-") {
wor ds+=wor d;
wor d=""":
}
if (words.length() == 0) // if no space or dash, insert one

wor ds+=wor d+"-";
wr apVect or . addEl ermrent (wor ds) ;
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wapVector.addEl ement (s);
return wapVector;

The code is definitely getting smaller and more manageable. But the body of the while

method still seems big and bulky. | decide to Extract Method [Fowler]:

public static Vector wap(String s) {
Vector wapVector = new Vector();
String words;
while (s.length() > 16) {
words = extract PhraseFron{(s);

Page 69 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

wr apVect or . addEl ement (wor ds) ;
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wapVector.addEl ement (s);
return w apVector;

}

private static String extractPhraseFron(String cardText) {
String phrase = ""
String word="";
for (int i=0;i<16;i++) {
word += cardText.charAt(i);

if (cardText.charAt(i)==" " || cardText.charAt(i)=="-") {
phrase += word;
wor d="""
}
if (phrase.length() == 0) // no found space or dash, insert dash

phrase+=word+"-";
return phrase,;

We're making progress. But I'm still not happy with thewr ap() method: | don’t like the fact
that the code is adding elements to the wr apVect or both inside and outside the while loop and |
also don't like the mysterious line that changes the value of the String “s” (which is a bad name
for avariable that holds on to a card’ stext):

s = s.substring(words.length(), s.length());

So | ask myself how | can make this logic clearer? Given some card text, | would like my
code to show how the text is broken up into pieces, added to a collection and returned. | decide
that the best way to achieve this objective is to push all code that is responsible for creating a
“phrase” into the ext r act Phr aseFr om() method. | hope to end up with a while loop that has
one line of code.

My first step is to rename and change the type of the St ri ng variable, s. | call it car dText
and change it to be StringBuffer, since it will be altered by the extract PhraseFrom()
method. This change requiresthat | make al callers of wrap() passin a StringBuffer instead of
a String. As | go about doing this work, | see that | can also get rid of the temporary variable,
wor d, leaving the following:

public static Vector wap(StringBuffer cardText) {
Vector wapVector = new Vector();
whil e (cardText.length() > 16) {
wr apVect or . addEl enent (extract PhraseFron{ cardText));
cardText. del ete(0, words.length());

}
if (cardText.length()>0) w apVector.addEl ement (cardText.toString());
return w apVector;

Now | must figure out how to push the fragmented pieces of phrase-construction logic down
into the ext r act Phr aseFron() method. My tests give me a lot of confidence as | go about
thiswork. First, | go for the low-hanging fruit: the code that deletes a substring from car dText
can easily be moved to ext r act Phr aseFr on() , which yields the following:

public static Vector wap(StringBuffer cardText) {
Vector wapVector = new Vector();
whil e (cardText.length() > 16)
wr apVect or . addEl enent (extract PhraseFron{ cardText));
if (cardText.length()>0) w apVector.addEl enent (cardText.toString());
return wapVector;

Page 70 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Now, I've just got the line of code after the while loop to worry about:

if (cardText.length()>0) w apVector.addEl enent (cardText.toString());

How can | get that code to live in the ext r act Phr aseFron() method? | study the while
loop and see that I'm looping on a magic number, 16. First, | decide to make a constant for that
number, called MAX_LINE_WIDTH. Then, as | continue to study the loop, | wonder why the
wr ap() method has two conditionals fragments that check car dText . | engt h(), (one in the
while loop and one after the while loop). | want to remove that duplication. | decide to change
thewhi | e loop to doitsthingwhilecar dText .l ength() > 0.

This last change requires a few changes to the ext r act Phr aseFr ommethod to make it
capable of handling the case when a line of text isn't greater than 16 characters (now called
MAX_ LI NE_W DTH). Once thetests confirm that everything is working, wrap() now feelslike a
Composed Method, while ext r act Phr aseFr on{) is getting there. Here's what we have
now:

public static Vector wap(StringBuffer cardText) {
Vect or wrapLines = new Vector();
while (cardText.length() > 0)
wr apLi nes. addEl enent (extract PhraseFron{cardText));
return wr aplLi nes;

}

private static String extractPhraseFronm(StringBuffer cardText) {
String phrase = ""
String word="";
final int MAX_CHARS = Math. mi n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAX_CHARS; i++) {
word += cardText.charAt(i);
if (cardText.charAt(i)==" "]| cardText.charAt(i)=="-" ||
cardText.toString().endsWth(word)) {
phrase += word;
wor d="";

}

}

if (phrase.length() == 0)
phrase=word+"-";

cardText. del ete(0, phrase.length());

return phrase;

}

This code is simpler than the original, so we could stop here. But I'm not altogether happy with
the ext r act Phr aseFr om() method. It's not a Composed Method, so I'm drawn to continue
refactoring it. What's wrong with it? Waell, there's a lot of conditional logic in it, and that
conditional logic doesn’t communicate very well. For example, what does this mean:

if (cardText.charAt(i)==" " || cardText.charAt(i)=="-" ||
cardText.toString().endsWth(word)) {
phrase += word;
wor d="";

}

Since my pair and | wrote that code, | know that it means, “if we've found a complete word, then
add the word to the phrase, and blank out the word variable so we can find the next word.” But
the next reader will have to figure that out. So I'll make the intention clear, by using Extract
Method (which also requires changing some variables from Strings to StringBuffers):

private static String extractPhraseFron(StringBuffer cardText) {
StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math. m n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {
wor d. append(cardText.charAt(i));
if (isConpleteWrd(word, cardText)) /1 note how nore intention-realing this is

Page 71 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
addConpl et eWor dTo(phrase, word); // same for this line

if (phrase.length() == 0)

phrase. append(word + "-");
cardText . del ete(0, phrase.length());
return phrase.toString();

}
private static bool ean i sConpl eteWrd(StringBuffer word, StringBuffer cardText) {
return (word.charAt(word.length()-1) ==" " || word.charAt(word.length()-1) =="-"' ||
cardText.toString().endsWth(word.toString()));
}

private static void addConpl et eWor dTo(Stri ngBuffer phrase, StringBuffer word) {
phrase. append(wor d) ;
wor d. del ete(0, word.length());

}

We're getting closer. But | still don’t like the cryptic conditional statement that comes after the
f or loop. So | apply Extract Method to it:

private static String extractPhraseFron(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math. m n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

wor d. append(cardText.charAt(i));

if (isConpletewrd(word, cardText))

addConpl et eWor dTo(phrase, word);

addRemai ni ngWor dTo(phrase, word); // now this code comuni cates intention
cardText. del ete(0, phrase.length());
return phrase.toString();

}

private static void addRemai ni ngWor dTo(Stri ngBuffer phrase, StringBuffer word) {
if (phrase.length() == 0)
phrase. append(word + "-");

The ext ract PhraseFr on() method is now 10 lines of code and reads a lot more like English.
But it is still uneven! Consider these two lines of code;

wor d. append(cardText . char At (i));

cardText. del ete(0, phrase.length());

Both of these lines aren't complicated, but compared with the other code, which reads like
English, these hits of code stick out, demanding that the reader concentrates to understand them.
So | push myself to extract these 2 lines of code into 2 intention-revealing methods:
addChar act er To() andr enovePhr aseFr on() . Thisyieldsa Composed Method:

private static String extractPhraseFron(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math. m n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

addChar act er To(word, cardText.charAt(i));

if (isConpleteWrd(word, cardText))

addConpl et eWor dTo(phrase, word);

}

addRemai ni ngWor dTo(phrase, word);
renmovePhr aseFron{ cardText, phrase);
return phrase.toString();

}
My tests run green and |’ m satisfied.

Page 72 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example 3

private void paintCard(Graphics g) {

Image image = null;

if (card.getType().equals("Problem™)) {
image = explanations.getGameUl().problem;

} else if (card.getType().equals("Solution")) {
image = explanations.getGameUl().solution;

} else if (card.getType().equals("Value™)) {
image = explanations.getGameUl().value;

g.drawlmage(image,0,0,explanations.getGameUl());

if (highlight)
paintCardHighlight(g);
paintCardText(g);

2

private void paintCard(Graphics g) {
paintCardimage(qg);
paintCardHighlight(g);
paintCardText(g);

}

The above, original pai nt Card() method isn't long, nor is it complicated. It paints a card
image, checks a flag to see if it must paint a card highlight, and then paints text onto the card.
Painting the card highlight and card text are peformed by the methods,
pai nt Car dHi ghl i ght () and pai nt Car dText () . But the code that paints the card image lives
not in a separate method but in the pai nt Card() method itsef. So? Weaell, consider the
refactored version of pai nt Card(). | can look at the refactored version and know what it does
in 2 seconds, while | have to spend a few brain cycles to figure out what the previous version
does. Trivial difference? No, not when you consider how much simpler an entire system is when
it consists of many composed methods, like pai nt Car d() .

So what was the smell that led to this refactoring? Code at different levels: raw code mixed
with higher-level code. When the method contains code at the same levels, it is easier to read and
understand. As the guidelines in the mechanics section say, above, Composed Methods tend to
have code at the same level.

Implementing this refactoring was incredibly easy. | did Extract Method [Fowler] as follows:

private void paintCard(G aphics g) {
pai nt Car dl mage(g);
if (highlight)
pai nt Car dHi ghl i ght (g);
pai nt CardText (g);
}

private void paint Cardl mage(G aphics g) {

I mage i mage = null;

if (card.getType().equal s("Problenm)) {
i mage = expl anati ons. get GaneUl (). probl em

} else if (card.getType().equals("Solution")) {
i mmge = expl anations. get GaneUl (). sol uti on;

} else if (card.getType().equal s("Value")) {
i mge = expl anati ons. get GaneUl (). val ue;

g. drawl nage(i nage, 0, 0, expl anati ons. get GarreUl ());

To finish this refactoring, | took the sole conditiona statement in the method (i f
(hi ghlight).) and pushed it down into the pai nt Car dHi ght | i ght () method. Why? |

Page 73 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

wanted the reader to simply see three steps: paint image, highlight image and paint card text. The
detail of whether or not we do highlight the card isn’t important to me — the reader can find that
out if they look. But if that confuses other programmers, I'd be happy to see the method
renamed to pai nt Car dHi ghl i ghl f Necessary(g) or something similar.

private void paintCard(G aphics g) {
pai nt Car dl nage(g);
pai nt Car dHi ghl i ght (g);
pai nt CardText (9) ;

Page 74 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Separate Versionswith Adapters*

Y ou’re code must handle different versions of a
component, library, API or other entity

Write Adapters for each version

you need to support
Client Query Here are a mix of
1 __| instance variables
-sdQuery: SDQuery ~ —— 7 | specfic to SuperDatabase
-sdLoginSession: SDLoginSession versions 5.1 & 5.2

-sdLogin: SDLogin
-sdSession: SDSession

-sd52: boolean void doQuery() ...
One login() method is - if (sd52)
for SuperDatabase 5.1, | *login(...) I
the other is for 5.2 togin(.) else
+doQuery() —
Client — <<Interface>>
1 Query
+doQuery()
+login(...)
AbstractQuery
#sdQuery: SDQuery
+doQuery()
#createQuery() : SDQuery
QuerySD52 QuerySD51
-sdLoginSession: SDLoginSession -sdLogin: SDLogin
-configFileName: String -sdSession: SDSession
+QuerySD52(configFileName: String) +login(...);
+login(...); #createQuery: SDQuery
#createQuery: SDQuery

Page 75 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

While software must often support multiple versions of a component, library or API, code
that handles these versions doesn’t have to be a confusing mess. And yet, | routinely encounter
code that attempts to handle multiple versions of something by overloading classes with version-
specific state variables, constructors and methods. Accompanying such code are comments like
“this is for version X — please delete this code when we move to version Y!” Sure, like that's
ever gonna happen. Most programmers won't delete the version X code for fear that something
they don’t know about still relies on it. So the comments don’t get deleted and many versions
supported by the code remain in the code.

Now consider an dternative: for each version of something you need to support, create a
separate class. The class name could even include the version number of what it supports, to be
realy explicit about what it does. We call such classes Adapters [GoF]. Adapters implement a
common interface and are responsible for functioning correctly with one (and usually only one)
version of some code. Adapters make it easy for client code to swap in support for one library or
APl version, or another. And programmers routinely rely on runtime information to configure
their programs with the correct Adapter.

| refactor to Adapters fairly often. | like Adapters because they let me decide how | want to
communicate with other people’'s code. In a fast-changing world, Adapters help me stay
insulated from the highly useful but rapidly changing APIs, such as those springing eternally
from the open-source world.

In severa of the refactorings in this catalog, | assert the importance of not refactoring to a
pattern too quickly in order to avoid overengineering. There must be a genuine need to refactor
to a pattern, such as an overabundance of conditional logic, code bloat, duplication or
unnecessary complexity. However, in the case of code that handles multiple versions of a
component, library, AP, etc., | often find compelling reasons to refactor to Adapters early, since
not doing so can lead to a propagation of conditional or version-dependent logic throughout a
system. So, while I'm not suggesting you adapt too early, be on guard for any complexity or
propagating conditionality or maintanance issues accruing from code written to handle multiple
versions of something. Adapt early and often so that it's easy to use or phase out various versions
of code.

Communication Duplication Simplicity
A class that mixes together When each version of a When a class is responsible for
version-specific state variables, component, library, API, etc., functioning correctly with several
constructors and methods isn't isolated in its own Adapter, versions of some other code, it is

doesn't effectively communicate | but is instead accessed directly rarely simple. Version-specfic
how each version is different or or through a single class, there code tends to bloat the single

similar. Communicate version tends to be the same repeating class and leads to conditional
differences by isolating the chunks of conditional logic that logic in the client code that uses
differences in separate Adapter make version-specific calls to it. Adapters provide a simple way
classes. Communicate how code. Such duplication bloats a | to isolate versions and give
versions are similar by making class and makes the code clients a simple interface to

each Adapter implement a harder to follow. every version.

common interface — either by
subclassing an abstract class,
implementing the same interface
or a combination thereof.

Mechanics

There are different ways to go about this refactoring, depending on what your code looks like
before you begin. For example, if you have a class that uses alot of conditional logic to handle
multiple versions of something, it's likely that your can create Adapters for each version by
repeatedly applying Replace Conditional with Polymor phism (255) [Fowler]. If you have a case
like that shown in the code sketch — in which a single class supports multiple versions of

Page 76 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

something by containing version-specific variables and methods, you'll refactor to Adapter using
adlightly different approach. I'll outline the mechanics for this latter scenario.

1.

2.

Identify the overburdened class (we'll call thisclass, “V™).

Apply Extract Subclass (330) [Fowler] or Extract Class (149) [Fowler] for a single
version of the multiple versions supported by V. Copy or move all instance variables and
methods used exclusively for that version into the new class.

To do this, you may need to make some private members of V public or protected. It may
also be necessary to initialize some instance variables via a constructor in your new
class, which will necessitate updates to callers of the new constructor.

Compile and test that your new class works as expected.

Repeat steps 2 —3 until there is no more version-specific codein V.

Remove any duplication found in the new classes, by applying refactorings like Pull Up
Method (322) [Fowler] and Form Template Method (345) [Fowler].

Compile and test.

Example

The code we'll refactor in this example, which was depicted in the code sketch above, is
based on real-world code that handles queries to a database using a third party library. To protect
the innocent, I’ ve renamed that library “ SD,” which stands for SuperDatabase.

1. We begin by identifying a class that is overburdened with support for multiple versions of
SuperDatabase. This class, called Query, provides support for SuperDatabase versions 5.1 and
5.2, which means it is already an Adapter to the SuperDatabase code. It just happens to be an
Adapter that is adapting too much.

In the code listing below, notice the version-specific instance variables, duplicate | ogi n()
methods and conditiona codeindoQuery():

public class Query . . .

private SDLogi n sdLogi n; /1 needed for SD version 5.1

private SDSessi on sdSessi on; /1 needed for SD version 5.1

private SDLogi nSessi on sdLogi nSessi on; /1 needed for SD version 5.2

private bool ean sd52; /1 tells if we're running under SD 5.2
private SDQuery sdQuery; /1 this is needed for SD versions 5.1 & 5.2

/1 this is alogin for SD 5.1
/1 NOTE: renove this when we convert all aplications to 5.2
public void login(String server, String user, String password) throws QueryException {

}

sd52 = fal se;
try {
sdSessi on = sdLogi n. | ogi nSessi on(server, user, password);
} catch (SDLogi nFail edException Ife) {
t hrow new QueryExcepti on(QueryExcepti on. LOG N_FAI LED,
"Login failure\n" + Ife, Ife);
} catch (SDSocket!| nitFail edException ife) {
t hrow new QueryExcepti on(QueryExcepti on. LOG N_FAI LED,
"Socket fail\n" + ife, ife);

/1 5.2 login
public void login(String server, String user, String password, String
sdConfi gFi | eName) throws QueryException {

sd52 = true;

Page 77 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

sdLogi nSessi on = new SDLogi nSessi on(sdConfi gFi | eNane, false);
try {
sdLogi nSessi on. | ogi nSessi on(server, user, password);
} catch (SDLogi nFail edException |fe) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Login failure\n" + Ife, Ife);
} catch (SDSocket!| nitFail edException ife) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Socket fail\n" + ife, ife);
} catch (SDNot FoundException nfe) {
t hrow new Quer yExcepti on(QueryExcepti on. LOG N_FAI LED,
"Not found exception\n" + nfe, nfe);

}

public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;
if (sd52)
sdQuery = sdLogi nSessi on. cr eat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
el se
sdQuery = sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();
}

2. Because Query doesn’t already have subclasses, | decide to apply Extract Subclass (330)
[Fowler] to isolate code that handles SuperDatabase 5.1 queries. My first step is to define the
subclass and create a constructor for it:

cl ass QuerySD51 extends Query {
public QuerySD51() {
super () ;

}

Next, | find al calls to the constructor of Query and, where appropriate, change the code to call
the Quer ySD51 constructor. For example, | find the following:

public void | ogi nToDat abase(String db, String user, String password)...
query = new Query();
try {
if (usingSDVersion52()) {
query. |l ogi n(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2
} else {
query. |l ogi n(db, user, password); // Login to SD 5.1
}

} ca.t“ch(QJeryExcepti on ge) ...
And change thisto:

public void | ogi nToDat abase(String db, String user, String password)...

try {
if (usingSDVersion52()) {
query = new Query();
query. |l ogi n(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2
} else {
query = new QuerySD51();
query. |l ogin(db, user, password); // Loginto SD5.1

} ca.t”ch(QJeryException ge) {

Next, | apply Push Down Method (328) [Fowler] and Push Down Fidd (329) [Fowler] to outfit
Quer ySD51 with the methods and instance variables it needs. During this step, | have to be
careful to consider the clients that are make calls to public Query methods, for if | move a public
method like | ogi n() from Query to aQuer ySD51, the caller will not be able to call the public
method unless its type is changed to Quer ySD51. Since | don't want to make such changes to

Page 78 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

client code, | proceed cautiously, sometimes copying and modifying public methods instead of
completely removing them from Query. While | do this, | generate duplicate code, but that
doesn’'t bother me now - I'll get rid of the duplication in step 5.

class Query...
. . ILogin:
protected SDQuery sdQuery; ’
/!l this is alogin for SD5.1

public void login(String server, String user, String password) throws QueryException {
/1 | make this a do-nothing nethod
}

public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;

H—({sd52)-
sdQuery = sdLogi nSessi on. cr eat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
else

execut eQuery();
}

cl ass QuerySD51 {
private SDLogi n sdLogi n;
private SDSessi on sdSession;

public void login(String server, String user, String password) throws QueryException {

try {
sdSessi on = sdLogi n. | ogi nSessi on(server, user, password);
} catch (SDLogi nFail edException Ife) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Login failure\n" + Ife, Ife);
} catch (SDSocket!| nitFail edException ife) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Socket fail\n" + ife, ife);

}

public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;

sdQuery = sdSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();

3. | compile and test that Quer ySD51 works. No problems.

4. Next, | perform steps 2 and 3 to create Quer ySD52. Along the way, | can make the Query
class abstract, along with the doQuer y() method. Here'swhat | have now:

Page 79 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Query

#sdQuery: SDQuery

+doQuery()

+login(...)

+login(...)

I
QuerySD52 QuerySD51

-sdLoginSession: SDLoginSession -sdLogin: SDLogin
-configFileName: String -sdSession: SDSession
+login(...) +login(...)
+doQuery() +doQuery()

Query isnow free of version-specific code, but it is not free of duplicate code.

5. 1 now go on amission to remove duplication. | quickly find some in the two implementations
of doQuery():

abstract class Query...
public abstract void doQuery() throws QueryException;

cl ass QuerySD51...
public void doQuery() throws QueryException {
if (sdQuery !'= null)
sdQuery. cl ear Resul t Set () ;

sdQuery = sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();
}

cl ass QuerySD52...
public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;

sdQuery = sdLogi nSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();

}

Each of the above methods simply initializes the sdQuery instance in a different way. This
means that | can Pull Up Method (322) [Fowler] to remove doQuery() from both subclasses,
and apply Form Template Method (345) [Fowler] on Query’s doQuery(), such that it calls a
Factory Method [GoF] to obtain the properly initialized sdQuer y instance:

public abstract class Query ...
prot ected abstract SDQuery createQuery(); /1l a Factory Method [GoF]

public void doQuery() throws QueryException { /1 a Tenpl ate Met hod [GoF]
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;
sdQuery = createQuery(); /1 call to the Factory Method
execut eQuery();

}

cl ass QuerySD51...
protected SDQuery createQuery() {
return sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
}

cl ass QuerySD52...
protected SDQuery createQuery() {

Page 80 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return sdLogi nSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
}

After compiling and testing the changes, | now face a more obvious duplication problem: Query
still declares public method for the SD 5.1 & 5.2 1 ogi n() methods, even though they don’'t do
anything anymore (i.e. the real login work is handled by the subclasses). The signatures for these
two | ogi n() method are identical, except for 1 parameter:

/1 SD 5.1 login
public void login(String server, String user, String password) throws QueryException ...

/1 SD 5.2 login
public void login(String server, String user,
String password, String sdConfigFileNanme) throws QueryException ...

| decide to make the | ogi n() signatures the same, by simply supplying Quer ySD52 with the
sdConfi gFi | eName information viaits constructor:

cl ass QuerySD52 ...
private String sdConfigFil eNane;
public QuerySD52(String sdConfigFil eNane) {
super();
t hi s. sdConfi gFi | eName = sdConfi gFi | eNane;
}

Now thereis oneabstract | ogi n() method on Query:

abstract class Query ...
public abstract void login(String server, String user,
String password) throws QueryException ...

And client code is updated as follows:

public void | ogi nToDat abase(String db, String user, String password)...
if (usingSDVersion52())
query = new QuerySD52(get SD52Confi gFi | eName());
el se
query = new QuerySD51();

try {
query. | ogi n(db, user, password);

} ca.t”ch(QJeryExcepti on ge) ...

I’'m now nearly done. Since Query is an abstract class, | decide to rename it Abst r act Query,
which communicates more about its nature. But making that name change necessitates changing
client code to declare variables of type Abstract Query instead of Query. Sincel don't want to
do that, | apply Extract Interface (341) [Fowler] on Abst r act Quer y to obtain aQuer y interface
that Abst r act Query canimplement:

interface Query {
public void login(String server, String user, String password) throws QueryException;
public void doQuery() throws QueryException;

}

abstract class AbstractQuery inplenments Query ...

Now, subclasses of Abst ract Query implement | ogi n(), while Abst r act Quer y doesn't even
need to declarethel ogi n() method, sinceit isan abstract class.

Page 81 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

6. | compile and test and everything works as planned. Each version of SuperDatabase is now
fully adapted. The code is smaller and treats each version in a more uniform way, all of which
makes it easier to

* seesmilarities and differences between the versions
» remove support for older, unused versions
» add support for newer versions

Adapting Legacy Systems

Organization X has an extremely sophisticated system which brings in most of their income,
but which happens to be written in about 2 million lines of COBOL, little of which was ever
refactored over a decade of development. Sound familiar? Systems like this are usualy hard to
extend because they were never refactored. And as a result, organizations that maintain such
systems can't easily add new features to them, which makes them less competitiveness, which
can ultimately put them out of business.

What to do? One popular approach is to use Adapters to model new views of the legacy
system. Client code talks to the Adapters, which in turn talk to the legacy code. Over time, teams
rewrite entire sytstems by simply writing new implementations for each Adapter. The process
goes likethis:

* ldentify asubsystem of your legacy system

* Write Adaptersfor that subsystem

* Write new client programs that rely on calls to the Adapters
e Create versions of each Adapter using newer technologies

» Test that the newer and older Adapters function identically
e Update client code to use the new Adapters

* Repeat for the next subsystem

This is an example of applying Separate Versions with Adapter, only it is performed across
an entire system or subsystem, so the mechanics are a bit different.

Page 82 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Adapt Interface

Y our class implements an interface but only provides
code for some of the interface’s methods.

Move the implemented methods to an Adapter
of the interface and make the Adapter
accessible from a Creation Method.

public class CardComponent extends Container implements MouseMotionListener ...
public CardComponent(Card card,Explanations explanations) {

addMouseMotionListener(this);

public void mouseDragged(MouseEvent e) {
e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,
getLocation().y+e.getY()-currPos.y);
repaint();

public void mouseMoved(MouseEvent e) {
}
public class CardComponent extends Container ...
public CardComponent(Card card,Explanations explanations) {

addMouseMotionListener(createMouseMotionAdapter());

}

private MouseMotionAdapter createMouseMotionAdapter() {
return new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {
e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,
getLocation().y+e.getY()-currPos.y);
repaint();

Motivation

Empty methods in concrete classes bother me. | often find that they’ re there because a class
needs to satisfy a contract by implementing an interface, but only really needs code for some of
the interface’ s methods. The rest of the methods get declared, but remain empty: they were added
to satisfy a compiler rule. | find that these empty methods add to the heftiness of a class's
interface (i.e. it's public methods), falsely advertise behavior (I'm a class that can, among other
things, do X(), Y() and Z() — only I realy only provide code for X()), and forces me to do work
(like declaring empty methods) that I’ d rather not do.

The Adapter pattern provides a nice way to refactor this kind of code. By implementing
empty methods for every method defined by an interface, the Adapter lets me subclass it to
supply just the code | need. In Java, | don’t even have to formally declare an Adapter subclass: |
can just create an anonymous inner Adapter class and supply a reference to it from a Creation
Method.

Page 83 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication Duplication Simplicity
Empty methods on a class don’'t | If more than one of your classes | Itis always simpler to supply
communicate very much at all. partially implements an interface, | less code than more. This
Either someone forgot to delete you’ll have numerous empty refactoring gives you a way to
the empty method, or it is just methods in your classes. You cut down on the number of
there because an interface can remove this duplication by methods your classes declare.
forces you to have it there. Itis letting each of the classes work In addition, when used to adapt
far better to communicate only with an Adapter which handles multiple interfaces, it can provide
what you actually implement, the empty method declarations. a nice way to partition methods
and an Adapter can make this in each of their respective
feasible. adapters.

Mechanics

1. If you don't aready have an adapter for the interface (which we'll call A), create a class
that implements the interface and provides do-nothing behavior. Then write a Creation
Method that will return a reference to an instance of your Adapter (which we'll call
Adapterinstance).

2. Delete every empty method in your class that's solely there because your class
implements A.

3. For those methods specified by A for which you have code, move each to your
Adapterlnstance.

4. Remove code declaring that your classimplements A.
5. Supply the Adapterinstance to clients who need it.
Example

We'll use the example from the code sketch above. In this case we have a class called
Car dConponent that extends the JDK Conponent class and implements the JDK's
MouseMot i onLi st ener interface. However, it only implements one of the two methods
declared by the MbuseMdt i onLi st ener interface. So our task here is to replace a partially
implemented interface with an Adapter.

1. The first step involves writing a Creation Method for our Adapterinstance. If we don’t have
an Adapterinstance, we need to create one using the refactoring, Adapt Interface. In this case, the
JDK aready supplies us with an adapter for the MouseMot i onLi st ener interface. It's called
MouseMot i onAdapt er . So we create the following new method on the Car dConponent class,
using Java s handy anonymous inner class capability:

private MouseMtionAdapter createMuseMtionAdapter() {
return new MouseMtionAdapter () {

}s
}

2. Next, we delete the empty method(s) that Car dConponent declared because it implemented
MouseMot i onLi st ener . In this case, it implemented nouseDr agged() , but did not implement
mouseMoved() .

. . 0

3. We're now ready to move the nouseDr agged() method from Car dConponent to our
instance of the MouseMbt i onAdapt er :

Page 84 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

private MuseMtionAdapter createlMuseMtionAdapter() {
return new MouseMbdti onAdapter () {
public void nouseDragged(MouseEvent e) {

e. consune();

dragPos. x = e.get X();

dragPos.y = e.getY();

set Locati on(getLocation().x+e. get X()-currPos. x,
get Location().y+e.getY()-currPos.y);

repaint();

}
4. Now we can removethei npl enent s MbuseMbt i onLi st ener from Car dConponent .
public class CardConponent extends Contai ner inplenrents—MouseMti-onkistener {

5. Finally, we must supply the new adapter instance to clients that need it. In this case, we must
look at the constructor. It has code that 1ooks like this:

publ i ¢ CardConponent () {

'a'ddl\/busel\/bti onLi stener(this);
}

This needs to be changed to call our new, private, Creation Method:

publ i c CardConponent () {

addMbuselMbt i onLi st ener (cr eat eMouselMdt i onAdapter());
}

Now we test. Unfortunately, since this is mouse related code, | don’t have automated unit tests.
So | resort to some simple manual testing and confirm that everything is ok.

Page 85 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

References

[Beck]
Beck, Kent. Smalltalk Best Practice Patterns. Upper Saddle River, N.J.: Prentice Hall, 1997.

[Bloch]
Bloch, Joshua. Effective Java. Addison-Wesley, 2001.

[Fowler]
Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[GOF]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Elements of
Reusable Object Oriented Software. Reading, Mass.: Addison-Wesley, 1995.

[JUnit]
Kent Beck and Erich Gamma. JUnit Testing Framework. Available on the Web
(http://www.junit.org).

Page 86 of 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Conclusion

Stay tuned for more refactorings. Thiswork is only the beginning of alarger work on this subject.
I welcome your thoughts and feedback. If you are interested in seeing the latest copies of this
work, please visit http://industriall ogic.com/xp/refactoring/

Acknowledgements

I'd like to thank my fantastic wife, Tracy, for her loving support and encouragement and the great
food she brings by when I’m caught up in writing.

Eric Evans has contributed more than any one else to making this work what it istoday. | want to
thank him for his continued support, thoughtful conversations, great ideas and feedback.

I’d also like to the thank the following people:
» Robert Hirshfeld, for helping clarify the Decorator mechanics section.

* Martin Fowler for inspiration and encouragement, for giving me the advice that | once
gave him (i.e. use code sketches at the beginning of each refactoring) and for numerous
helpful suggestions and ideas.

- Kent Beck for his reviews and suggestions.
- John Vlissides for hisreviews and suggestions.

- Ralph Johnson, Brian Foote, Brian Marick, Don Roberts, John Brant and others from the
University of Illinois.

- Somik Raha — for many great pairing sessions, refactoring ideas and some poor code he
once wrote when he was tired which provided great refactoring material.

e Many thanks to the following folks who provided excellent suggestions. Rob Mee, Jeff
Grigg, Kaoru Hosokawa, Don Hinton, Andrew Swan, Erik Meade, Ted Y oung.

Page 87 of 87

