

Refactoring To Patterns

version 1.13

Joshua Kerievsky
joshua@industriallogic.com

Industrial Logic, Inc.
http://industriallogic.com

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 2 of 87

Table of Contents

Introduction ... 5

Chain Constructors* .. 6

Motivation .. 7
Mechanics .. 7
Example .. 7

Replace Multiple Constructors with Creation Methods* 9

Motivation .. 9
Mechanics .. 10
Example .. 10
Parameterized Creation Methods .. 13

Encapsulate Subclasses with Creation Methods* 15

Motivation .. 15
Mechanics .. 16
Example .. 16

Extract Creation Class*.. 18

Motivation .. 18
Mechanics .. 19
Example .. 19

Replace Conditional Calculations with Strategy*....................... 22

Motivation .. 23
Mechanics .. 23
Example .. 24

Replace Implicit Tree with Composite*.. 31

Motivation .. 31
Mechanics .. 32
Example .. 32

Encapsulate Composite with Builder** ... 35

Motivation .. 35
Mechanics .. 36
Example .. 36
Extended Example ... 38

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 3 of 87

Extract Special-Case Logic into Decorators 41

Motivation .. 42
Mechanics .. 43
Example .. 43

Replace Hard-Coded Notifications with Observer* 50

Motivation .. 51
Mechanics .. 52
Example .. 52

Move Accumulation to Collecting Parameter*............................... 55

Motivation .. 55
Mechanics .. 56
Example .. 56
Example 2... 59

Replace One/Many Distinctions with Composite 60

Motivation .. 60
Mechanics .. 61
Example .. 61

Compose Method**.. 62

Motivation .. 62
Mechanics .. 63
Example 1... 64
Example 2... 67
Example 3... 73

Separate Versions with Adapters *... 75

Motivation .. 76
Mechanics .. 76
Example .. 77
Adapting Legacy Systems .. 82

Adapt Interface.. 83

Motivation .. 83
Mechanics .. 84
Example .. 84

References .. 86
Conclusion ... 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 4 of 87

Acknowledgements... 87

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 5 of 87

Introduction

I’ve yet to write a formal introduction to this work. At present, I’ve written more than a dozen
refactorings and have many more in the works. My goal in writing this is to help you learn how to

• refactor to Patterns when appropriate and away from Patterns when something simpler is
discovered

• use Patterns to communicate intention

• know and continue to learn a large body of Patterns

• understand how to implement Patterns in simple and sophisticated ways

• use Patterns to clean, condense, clarify and simplify code

• evolve designs

An additional goal I have is to fill a gap, first noted by my friend Martin Fowler in his classic
work: Refactoring: Improving The Design Of Existing Code:

Many of the refactorings, such as Replace Type Code with State/Strtaegy (227)
and Form Template Method (345) are about introducing patterns into a system.
As the essential Gang of Four book says, “Design Patterns…provide targets for
your refactorings.” There is a natural relation between patterns and refactorings.
Patterns are where you want to be; refactorings are ways to get there from
somewhere else. I don’t have refactorings for all known patterns in this book,
not even for all the Gang of Four patterns. This is another aspect of the
incompleteness of this catalog. I hope someday the gap will be closed.

The form I am using in this work is nearly identical to the one used by Martin in his Refactoring
book. I have added the following to this form:

• Zero, one or two asterisks beside the name of every refactoring. Zero asterisks mean I
don’t use the refactoring very often, one asterisk means I use it sometimes, and two
asterisks mean I use it quite often.

• A section on Communication, Duplication and Simplicity

• Numbered steps in the Mechanics section that correspond to numbered steps in the

Examples section.

This is a continuously evolving piece of work. Your feedback is welcome – please send thoughts,
comments or questions to joshua@industriallogic.com. This work lives on the internet at the
following address: http://industriallogic.com/xp/refactoring/

There is also an email list – called refactoring@yahoogroup.com – which is a good place to
discuss refactoring, refactoring to patterns and emerging tools and IDEs that enable automated
refactorings.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 6 of 87

Chain Constructors*

You have multiple constructors
that contain duplicate code

Chain the constructors together

to obtain the least duplicate code

public class Loan {
 ...
 public Loan(float notional, float outstanding, int rating, Date expiry) {
 this.strategy = new TermROC();
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating =rating;
 this.expiry = expiry;
 }
 public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
 this.strategy = new RevolvingTermROC();
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
 public Loan(CapitalStrategy strategy, float notional, float outstanding,
 int rating, Date expiry, Date maturity) {
 this.strategy = strategy;
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
}

public class Loan {
 ...
 public Loan(float notional, float outstanding, int rating, Date expiry) {
 this(new TermROC(), notional, outstanding, rating, expiry, null);
 }
 public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
 this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);
 }
 public Loan(CapitalStrategy strategy, float notional, float outstanding,

 int rating, Date expiry, Date maturity) {
 this.strategy = strategy;
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
}

!

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 7 of 87

Motivation

Code that’s duplicated across two or more of a class's constructors is an invitation for trouble.

Someone adds a new variable to a class, updates a constructor to initialize the variable, but
neglects to update the other constructors, and bang, say hello to your next bug. The more
constructors you have in a class, the more duplication will hurt you. It’s therefore a good idea to
reduce or remove all duplication if possible, which has the added bonus of reducing your
system’s code bloat.

 We often accomplish this refactoring with constructor chaining: specific constructors call
more general-purpose constructors until a final constructor is reached. If you have one
constructor at the end of every chain, I call that your catch-all constructor, since it handles every
constructor call. This catch-all constructor often accepts more parameters than the other
constructors, and may or may not be private or protected.

If you find that having many constructors on your class detracts from its usability, consider
applying Replace Multiple Constructors with Creation Methods* (9).

Communication Duplication Simplicity
When constructors in a class
implement duplicate work, the
code fails to communicate what
is specific from what is general.
Communicate this by having
specific constructors forward
calls to more general-purpose
constructors and do unique work
in each constructor.

Duplicate code in your
constructors makes your classes
more error-prone and harder to
maintain. Find what is common,
place it in general-purpose
constructors, forward calls to
these general constructors and
implement what isn’t general in
each constructor.

If more than one constructor
contains the same code, it’s
harder to see how each
constructor is different. Simplify
your constructors by making
specific ones call more general
purpose ones, in a chain.

Mechanics

1. Find two constructors (called A and B) that contain duplicate code. Determine if A

can call B or if B can call A, such that the duplicate code can be safely (and hopefully
easily) deleted from one of the two constructors.

2. Compile and test.

3. Repeat steps 1 and 2 for all constructors in the class, including ones you’ve already

touched, in order to obtain as little duplication across all constructors as possible.

4. Change the visibility of any constructors that may not need to be public.

5. Compile and test.

Example

1. We’ll go with the example shown in the code sketch. We start with a single Loan class, which
has three constructors to represent different types of loans and tons of bloated and ugly
duplication:

public Loan(float notional, float outstanding, int rating, Date expiry) {

this.strategy = new TermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 8 of 87

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new RevolvingTermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

public Loan(CapitalStrategy strategy, float notional, float outstanding, int rating,
Date expiry, Date maturity) {

this.strategy = strategy;
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

I study the first two constructors. They do contain duplicate code, but so does that third
constructor. I consider which constructor it would be easier for the first constructor to call. I see
that it could call the third constructor, with a minimum about of work. So I change the first
constructor to be:

public Loan(float notional, float outstanding, int rating, Date expiry) {

this(new TermROC(), notional, outstanding, rating, expiry, null);
}

2. I compile and test to see that the change works.

3. I repeat steps 1 and 2, to remove as much duplication as possible. This leads me to the second
constructor. It appears that it too can call the third constructor, as follows:

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {

this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);
}

I’m now aware that constructor three is my class’s catch-all constructor, since it handles all of the
construction details.

4. I check all callers of the three constructors to determine if I can change the public visibility of
any of them. In this case, I can’t (take my word for it – you can’t see the code that calls these
methods).

5. I compile and test to complete the refactoring.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 9 of 87

Replace Multiple Constructors with Creation Methods*

Many constructors on a class make it hard to decide
 which constructor to call during development

Replace the constructors with intention-revealing

Creation Methods that return object instances

Loan

+Loan(notional, outstanding, customerRating, expiry)
+Loan(notional, outstanding, customerRating, expiry, maturity)
+Loan(capitalStrategy, outstanding, customerRating, expiry, maturity)
+Loan(type, capitalStrategy, outstanding, customerRating, expiry)
+Loan(type, capitalStrategy, outstanding, customerRating, expiry, maturity)

Loan

#Loan(type, capitalStrategy, notional, outstanding, customerRating, expiry, maturity)
+newTermLoan(notional, outstanding, customerRating, expiry) : Loan
+newTermLoanWithStrategy(capitalStrategy, notional, outstanding, customerRating, expiry) : Loan
+newRevolver(notional, outstanding, customerRating, expiry) : Loan
+newRevolverWithStrategy(capitalStrategy, notional, outstanding, customerRating, expiry) : Loan
+newRCTL(notional, outstanding, customerRating, expiry, maturity) : Loan
+newRCTLWithStrategy(capitalStrategy, notional, outstanding, customerRating, expiry, maturity) : Loan

!

Motivation

Some languages allow you to name your constructors any old way you like, regardless of the
name of your class. Other languages, such as C++ and Java, don’t allow this: each of your
constructors must be named after your class name. If you have only one constructor, this isn’t a
problem. But if you have multiple constructors, programmers will have to choose which
constructor to call by studying which parameters are expected and/or poking around at the
constructor code. What’s so wrong with that? A lot. Multiple constructors simply don’t
communicate intention efficiently or effectively. The more constructors you have, the easier it is
for programmers to mistakenly choose the wrong one. Having to choose which constructor to
call slows down development and the code that does make the call to one of the many
constructors often fails to sufficiently communicate the nature of the object being constructed.

If you think that sounds bad, it gets worse. As systems mature, programmers often add more
and more constructors to classes without checking to see if older constructors are still being used.
Constructors that continue to live in a class when they aren’t being used are dead weight, serving
only to bloat the class and make it more complicated than it needs to be. Mature software
systems are often filled with dead constructor code because programmers lack fast, easy ways to
identify all callers to specific constructors: either their IDE doesn’t help them with this or it is too
much trouble to devise and execute search expressions that will identify the exact callers of a
specific method. On the other hand, if the majority of object creation calls come through
specifically-named methods, like createTermLoan() and createRevolver(), it is fairly
trivial to find all callers to such explicitly-named methods.

Now, what does our industry call a method that creates objects? Many would answer
“Factory Method,” after the name given to a creational pattern in the classic book, Design Pattern

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 10 of 87

[GoF]. But are all methods that create objects true Factory Methods? Given a broad definition of
the term – i.e. a method that simply creates objects – the answer would be an emphatic “yes!”
But given the way the authors of the creational pattern, Factory Method, wrote about it (in 1994),
it is clear that not every method that creates objects offers the kind of loose-coupling provided by
a genuine Factory Method. So, to help us all be clearer when discussing designs or refactorings
related to object creation, I’m using the term Creation Method to refer to a method that creates
objects. This means that every Factory Method is a Creation Method but not necessarily the
reverse. It also means that you can substitute the term Creation Method wherever Martin Fowler
or Joshua Bloch use the term Factory Method in their excellent books, Refactoring [Fowler] and
Effective Java [Bloch], respectively.

Communication Duplication Simplicity
Copious constructors don’t
communicate available types
very well – communicate type
availability clearly by offering
access to instances via intention-
revealing Creation Methods

There is no direct duplication
here; just many nearly identical-
looking constructors

Figuring out which constructor to
call isn't simple – make it simple
by offering up the various types
through intention-revealing
Creation Methods.

Mechanics

1. Identify the class that has copious constructors. These constructors will often have

abundant parameters, which further confuses developers when they want to choose which
constructor to call to obtain an instance.

2. Identify the catch-all constructor or create one using Chain Constructors (6). If your

catch-all constructor is public, make it private or protected.

3. For every type of object that can be created using one of the many constructors, create an
intention-revealing Creation Method. Test that each Creation Method returns the correct
type of object and confirm that each Creation Method is called by some client code (if
there is no user of the Creation Method, remove it until there is a need for it).

4. Replace all calls to constructors with calls to the appropriate Creation Methods. This can

take some work but will result in easier-to-read client code.

Example

1. I’ll use the example shown in the code sketch. We start with a single Loan class, which has
copious constructors to represent some form of a Term Loan, Revolver or RCTL (a Revolver and
Term Loan combination).

public class Loan {

private static String TERM_LOAN = “TL”;
private static String REVOLVER = “RC”;
private static String RCTL = “RCTL”;
private String type;
private CapitalStrategy strategy;
private float notional;
private float outstanding;
private int customerRating;
private Date maturity;
private Date expiry;

public Loan(float notional, float outstanding, int customerRating, Date expiry) {
this(TERM_LOAN, new TermROC(), notional, outstanding,
customerRating, expiry, null);

}
public Loan(float notional, float outstanding, int customerRating, Date expiry,

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 11 of 87

Date maturity) {
this(RCTL, new RevolvingTermROC(), notional, outstanding, customerRating,
expiry, maturity);

}
public Loan(CapitalStrategy strategy, float notional, float outstanding,

int customerRating, Date expiry, Date maturity) {
this(RCTL, strategy, notional, outstanding, customerRating,
expiry, maturity);

}
public Loan(String type, CapitalStrategy strategy, float notional,

float outstanding, int customerRating, Date expiry) {
this(type, strategy, notional, outstanding, customerRating, expiry, null);

}
public Loan(String type, CapitalStrategy strategy, float notional,

float outstanding, int customerRating, Date expiry, Date maturity) {
this.type = type;
this.strategy = strategy;
this.notional = notional;
this.outstanding = outstanding;
this.customerRating = customerRating;
this.expiry = expiry;
if (RCTL.equals(type))

this.maturity = maturity;
}

}

There are five constructors, the last of which is the catch-all constructor. If you look at these
constructors, it isn’t easy to know which ones create Term Loans, which ones create Revolvers,
and which ones create RCTLs. I happen to know that an RCTL needs both an expiry date and a
maturity date; so to create one, I must call a constructor that lets me pass in both dates. But do
other programmers who will use this code know this? If they don’t, will the constructors
communicate sufficiently when I’m not around? Well, they will probably be able to figure it out,
with a little work. But they shouldn’t have to work at all to obtain the type of Loan they need.

Before we continue with the refactoring, I want to know what other assumptions are made in
the above constructors. There is a major one: if you call the first constructor you will get back a
Term Loan, not a Revolver. If you want a Revolver instance, you have to call one of the last two
constructors, which lets you pass in a Loan type. Hmmm, I wonder if all users of this code will
know this? Or will they have to learn by encountering some ugly bugs?

2. Our next task is to identify the catch-all constructor for the Loan class. This is easy – it is the
constructor that takes the most parameters:

public Loan(String type, CapitalStrategy strategy, float notional, float outstanding,
int customerRating, Date expiry, Date maturity) {
this.type = type;
this.strategy = strategy;
this notional = notional;
this.outstanding = outstanding;
this.customerRating = customerRating;
this.expiry = expiry;
if (RCTL.equals(type)

this.maturity = maturity;
}

I make this constructor protected:

protected Loan(String type, CapitalStrategy strategy, float notional, float outstanding,

int customerRating, Date expiry, Date maturity)

3. Next, I must identify the types of objects that may be created using one of the many Loan
constructors. In this case I identify the following types:

• a Term Loan with default capital strategy
• a Term Loan with custom capital strategy
• a Revolver with default capital strategy

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 12 of 87

• a Revolver with custom capital strategy
• an RCTL with default capital strategy
• an RCTL with custom capital strategy

I begin by writing a test for a new Creation Method that will return a Term Loan with a default
Term Loan capital strategy:

public void testTermLoan() {
String custRating = 2;
Date expiry = createDate(2001, Calendar.NOVEMBER, 20);
Loan loan = Loan.newTermLoan(1000f, 250f, CUSTOMER_RATING, expiry);
assertNotNull(loan);
assertEquals(Loan.TERM_LOAN, loan.getType());

}

This test doesn’t compile, run or pass until I add the following static method to the Loan class:

public class Loan...

static Loan newTermLoan(float notional, float outstanding, int customerRating,
Date expiry) {
return new Loan(TERM_LOAN, new TermROC(), notional, outstanding,

customerRating, expiry, null);
}

Notice how this method delegates to the protected catch-all constructor identified in step 1.
I will create five similar tests and five additional intention-revealing Creation Methods for the

remaining object types. As this work is done, the public Loan constructors are eliminated a little
at a time. Here’s what the refactored Loan class looks like:

public class Loan {

private static String TERM_LOAN = “TL”;
private static String REVOLVER = “RC”;
private static String RCTL = “RCTL”;
private String type;
private CapitalStrategy strategy;
private float notional;
private float outstanding;
private int customerRating;
private Date maturity;
private Date expiry;

protected Loan(String type, CapitalStrategy strategy, float notional,
float outstanding, int customerRating, Date expiry, Date maturity) {
this.type = type;
this.strategy = strategy;
this notional = notional;
this.outstanding = outstanding;
this.customerRating = customerRating;
this.expiry = expiry;
if (RCTL.equals(type)

this.maturity = maturity;
}
static Loan newTermLoan(float notional, float outstanding, int customerRating,

Date expiry) {
return new Loan(TERM_LOAN, new TermROC(), notional, outstanding, customerRating,

expiry, null);
}
static Loan newTermWithStrategy(CapitalStrategy strategy, float notional,

float outstanding, int customerRating, Date expiry) {
return new Loan(TERM_LOAN, strategy, new TermROC(), notional, outstanding,

customerRating, expiry, null);
}
static Loan newRevolver(float notional, float outstanding, int customerRating,

Date expiry) {
return new Loan(REVOLVER, new RevolverROC(), notional, outstanding,

customerRating, expiry, null);
}
static Loan newRevolverWithStrategy(CapitalStrategy strategy, float notional,

float outstanding, int customerRating, Date expiry) {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 13 of 87

return new Loan(REVOLVER, strategy, new RevolverROC(), notional, outstanding,
customerRating, expiry, null);

}
static Loan newRCTL(float notional, float outstanding, int customerRating,

Date expiry, Date maturity) {
return new Loan(RCTL, new RCTLROC(), notional, outstanding,

customerRating, expiry, maturity);
}
static Loan newRCTLWithStrategy(CapitalStrategy strategy, float notional,

float outstanding, int customerRating, Date expiry, Date maturity) {
return new Loan(RCTL, strategy, new RevolverROC(), notional, outstanding,

customerRating, expiry, maturity);
}

}

Now it is quite clear how to obtain the kind of Loan instance you need – you simply look at

the available types and call the correct method. The new Creation Methods still take a fair
number of parameters. Introduce Parameter Object (295) [Fowler] is a refactoring that can help
you reduce the number of parameters you pass to methods.

Parameterized Creation Methods

As you consider implementing this refactoring on a class, you may calculate in your head that
you’d need something on the order of 50 Creation Methods to account for every object
configuration supported by your class. Since writing 50 methods doesn’t sound like much fun,
you may decide not to do this refactoring. However, there are ways to handle this situation. First,
you need not produce a Creation Method for every object configuration: you can write Creation
Methods for the most popular configurations and leave some public constructors around to handle
the rest of the cases. In addition, it often makes sense to use parameters to cut down on the
number of Creation Methods – we call these parameterized Creation Methods. For example, a
single Apple class could be instantiated in a variety of ways:

• based on the family of apple
• based on the apple’s country of origin
• based on the color of apple
• with or without seeds
• peeled or not peeled

These options present numerous kinds of Apples, even though they aren’t defined as explicit

Apple subclasses. To obtain the Apple instance you need, you must call the correct Apple
constructor. But there can be many of these Apple constructors, corresponding with the many
Apple types:

public Apple(AppleFamily family, Color color) {

this(family, color, Country.USA, true, false);
}
public Apple(AppleFamily family, Color color, Country country) {

this(family, color, country, true, false);
}
public Apple(AppleFamily family, Color color, boolean hasSeeds) {

this(family, color, Country.USA, hasSeeds, false);
}
public Apple(AppleFamily family, Color color, Country country, boolean hasSeeds) {

this(family, color, country, hasSeeds, false);
}
public Apple(AppleFamily family, Color color, Country country, boolean hasSeeds, boolean
isPeeled) {

this.family = family;
this.color = color;
this.country = country;
this.hasSeeds = hasSeeds;
this.isPeeled = isPeeled;

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 14 of 87

As we’ve noted before, all of these constructors make the Apple class harder to use. To
improve the usability of the Apple class, yet not write a large quantity of Creation Methods, we
could identify the most popular kinds of Apples created and simply make Creation Methods for
them:

public static Apple createSeedlessAmericanMacintosh();
public static Apple createSeedlessGrannySmith();
public static Apple createSeededAsianGoldenDelicious();

These Creation Methods would not altogether replace the public constructors, but would
supplement them and perhaps reduce their number. However, because the above Creation
Methods aren’t parameterized, they could easily multiple over time, yielding a forrest of Creation
Methods that would also make it hard to choose the kind of Apple someonen needed. Therefore,
when faced with so many possible combinations, it oftem makes sense to write parameterized
Creation Methods:

public static Apple createSeedlessMacintosh(Country c);
public static Apple createGoldenDelicious(Country c);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 15 of 87

Encapsulate Subclasses with Creation Methods*

Subclasses implement a common interface
but are constructed in diverse ways

Encapsulate the subclasses with intention-revealing

Creation Methods in the base class

TermLoan

+TermLoan(...)

!
Loan

#Loan(...)
+newTermLoan(...) : Loan
+newRevolver(...) : Loan
+newRCTL(...) : Loan

Client

Client

Revolver

+Revolver(...)

RCTL

+RCTL(...)

Loan

#Loan(...)

TermLoan

#TermLoan(...)

Revolver

#Revolver(...)

RCTL

#RCTL(...)

Motivation

The motivation for doing this refactoring is to hide implementation details from those who

don’t need to know about them.
Consider a design in which you have numerous subclasses that implement a common

interface. You expect client code to communicate with these subclasses via the common
interface. But if you don’t protect the subclass constructors, you make it possible for clients to
directly instantiate them. What’s so wrong with that?

Here’s what’s wrong: once programmers write code that talks directly to a subclass type
rather than through its common interface, the door is open for changing the subclass interface in
response to the needs of client code. This happens quiet often on projects. Once it happens, the
altered subclass is different from the other subclasses and its base class: it has special methods on
it that are only available via its interface and not the common interface. That may seem like no
big deal, but it leads to the creation of a lot of special-case logic.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 16 of 87

 I recently implemented this refactoring on a project where we had about 25 similar
subclasses, each of which had its own small collection of public constructors. Client code on that
system directly instantiated the various subclasses, and programmers would sometimes instantiate
the wrong subclass or the right subclass with the wrong constructor. The refactoring
encapsulated the details and produced a single place to get a well-named subclass instance.

Communication Duplication Simplicity
If it is important that client code
talk with subclass instances via a
common interface, it is important
to communicate this in your
code. Creating subclasses
doesn't communicate this very
well. Instead, create protected
subclass constructors and
Creation Methods that give
clients access to the various
subclass types.

Duplication isn't an issue with
this refactoring.

Figuring out which subclass to
instantiate and how to instantiate
it isn't as simple as calling
intention-revealing Creation
Methods, particularly when you
have several subclasses and
numerous ways to instantiate
them. It is simpler if clients don’t
have to know about subclasses,
but can instead obtain instances
from superclass Creation
Methods.

Mechanics

1. Make the subclass constructor that you’d like to encapsulate via a superclass Creation

Method protected.

2. Create an intention-revealing Creation Method on the superclass. Makes its body a call to
the protected subclass constructor.

3. Replace all calls to the subclass constructor with calls to the superclass Creation Method.

4. Compile and test after each replacement.

Example

1. In the refactoring, Replace Multiple Constructors with Creation Methods* (9), three loan types
– Term Loan, Revolver and RevolverTerm – were represented in the single Loan class. In this
example, each of the loan types will be a subclass of an abstract Loan superclass:

abstract class Loan {

...
protected Loan(...) {

...
}

}

public class TermLoan extends Loan {
public TermLoan(...) {

super(...);
}

}

public class Revolver extends Loan {
public Revolver(...) {

super(...);
}

}

public class RCTL extends Loan {
public RCTL(...)

super(...);
}

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 17 of 87

The abstract Loan superclass constructor is protected, and the constructors for the three
subclasses are public. We’ll focus on the TermLoan class. The first step is to protect its
constructor:

 public class TermLoan extends Loan {

protected TermLoan(...){
super(...);

}
}

2. The next step is to create intention-revealing Creation Methods on the Loan class for the
protected TermLoan constructor:

abstract class Loan...

public static Loan newTermLoan(...) {
return new TermLoan(...);

}

3. We must now replace client calls to the TermLoan constructor with a call to the superclass
Creation Method:

client code...

Loan termLoan = Loan.newTermLoan(1000f, 250f, getCustRating(), expiryDate);

Consider what this code now does: it gives access to the subclass via the superclass, and ensures
that clients obtain subclass instances via the Loan interface. This prevents clients from directly
instantiating a TermLoan. More important, the design communicates to other programmers Loan
subclasses are not meant to be public – the convention is to offer up access to subclasses via the
superclass and a common interface.

4. In this final step we compile and test. If you do test-first design, instead of waiting till step 4
to test, you will begin this refactoring by writing a test to obtain the Loan instance you want from
the intention-revealing superclass Creation Method.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 18 of 87

Extract Creation Class*

Too many Creation Methods on a class obscure
 it’s primary responsibility (or responsibilities)

Move the Creation Methods for a related set

of classes to one Creation Class

!

Client

Client

Loan

#Loan(...)
+newAdvisor(...)
+newLetterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...)
+newTermLoan(...)
+newVariable(...)
+calcCapital(...)
+calcIncome(...)
+calcROC(...)
+setOutstanding(...)

Loan

#Loan(...)
+calcCapital(...)
+calcIncome(...)
+calcROC(...)
+setOutstanding(...)

LoanCreator

+newAdvisor(...)
+newLetterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...)
+newTermLoan(...)
+newVariable(...)

Motivation

This refactoring is essentially Extract Class [Fowler], only it is done on an existing class’s
Creation Methods. There’s nothing wrong with a few Creation Methods on a class, but as the
number of them grows, a class’s own primary responsibilities – it’s main purpose in life – can
feel like it is obscured, outweighed by too much creational code. At such times, it’s best to
restore the class’s identity by extracting all of its Creation Methods into their own home. We call
such a home a Creation Class. Creation Classes are a little like Abstract Factories [GoF] in that
they often create a related set of objects, but are most unlike Abstract Factories in that you don’t
substitute one Creation Class for another at runtime, because you’re not concerned with swapping
out one family of products for another. Creation Classes are usually implemented as classes that
contain static methods that create object instances.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 19 of 87

Communication Duplication Simplicity

When we create classes, we
give then responsibilities. One
such responsibility, which is
often not a class’s primary
responsibility, is object creation.
When object creation begins to
dominate the public interface of
the class, the class no longer
strongly communicates its main
purpose. When that happens,
it’s best to communicate the act
of object creation by creating a
special class just to create
instances of the object – i.e. a
Creation Class.

Duplication is not an issue with
respect to this refactoring.

One principle states that the
fewer responsibilities a class
has, the simpler it is. That
principle can lead to an
explosion of class, which can
make a system not simple to
work with at all. So one must
use judgement. When creational
responsibilities mix too much
with a class’s main
responsibilities, the class isn’t
simple. Simplify it by extracting
the creational code into a
Creation Class.

Mechanics

1. Identify a class (which we’ll call “A”) that is overbalanced with Creation Methods.

2. Create a class that will be your Creation Class. Name it after it’s purpose in life, which

will be to create various objects from a set of related classes.

3. Move all Creational Methods from A to your new class, making sure that all protection
privledges are accounted for.

4. Change all callers to obtain object references from your new Creation Class, rather than

from A.

 Example

Though I use different example code from Martin Fowler, I do tend to repeat it as I am
intrinsically lazy. So if you don’t mind, we’ll work with the same brainless Loan example,
outlined in the code sketch above. Assume that there is test code for the example code below –I
didn’t include it the text since this refactoring is fairly trivial.

1. We begin with a Loan class that has lots of code for handling the responsibilities of a Loan
and being a creator of Loan objects:

public class Loan {

private double notional;
private double outstanding;
private int rating;
private Date start;
private CapitalStrategy capitalStrategy;
private Date expiry;
private Date maturity;
// . . . more instances variables not shown

protected Loan(double notional, Date start, Date expiry,
Date maturity, int riskRating, CapitalStrategy strategy) {
this.notional = notional;
this.start = start;
this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capitalStrategy = strategy;

}
public double calcCapital() {

return capitalStrategy.calc(this);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 20 of 87

}

public void setOutstanding(double newOutstanding) {
outstanding = newOutstanding;

}

// ... more methods for dealing with the primary responsibilities of a Loan, not shown

public static Loan newAdvisor(double notional, Date start,
Date maturity, int rating)

return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());
}
public static Loan newLetterOfCredit(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newRCTL(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
public static Loan newRevolver(double notional, Date start,

Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

}
public static Loan newSPLC(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newTermLoan(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newVariableLoan(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
}

2. Next, I create a class called LoanCreator, since it’s sole purpose in life is to be a place
where clients can obtain Loan instances:

public class LoanCreator {
}

3. Now I move all of the Creation Methods from Loan to LoanCreator, placing LoanCreator
in the same package as Loan (and it’s Capital stategies) so it has the protection level it needs to
instantiate Loans:

public class LoanCreator {

public static Loan newAdvisor(double notional, Date start,
Date maturity, int rating)

return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());
}
public static Loan newLetterOfCredit(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newRCTL(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
public static Loan newRevolver(double notional, Date start,

Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

}
public static Loan newSPLC(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newTermLoan(double notional, Date start,

Date maturity, int rating) {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 21 of 87

return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());
}
public static Loan newVariableLoan(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
}

4. To finish, I simply change calls of the form:

Loan termLoan = Loan.newTermLoan(…)

to

Loan termLoan = LoanCreator.newTermLoan(…)

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 22 of 87

Replace Conditional Calculations with Strategy*

You use a lot of conditional logic in a calculation

Delegate the calculation to a Strategy object

public class Loan ...
 public double calcCapital() {
 return riskAmount() * duration() * RiskFactor.forRiskRating(rating);
 }
 private double riskAmount() {
 if (unusedPercentage != 1.00)
 return outstanding + calcUnusedRiskAmount();
 else return outstanding;
 }
 private double calcUnusedRiskAmount() {
 return (notional - outstanding) * unusedPercentage;
 }
 private double duration() {
 if (expiry == null)
 return ((maturity.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
 else if (maturity == null)
 return ((expiry.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
 else {
 long millisToExpiry = expiry.getTime() - start.getTime();
 long millisFromExpiryToMaturity = maturity.getTime() - expiry.getTime();
 double revolverDuration = (millisToExpiry/MILLIS_PER_DAY)/365;
 double termDuration = (millisFromExpiryToMaturity/MILLIS_PER_DAY)/365;
 return revolverDuration + termDuration;
 }
 }
 private void setUnusedPercentage() {
 if (expiry != null && maturity != null) {
 if (rating > 4) unusedPercentage = 0.95;
 else unusedPercentage = 0.50;
 } else if (maturity != null) {
 unusedPercentage = 1.00;
 } else if (expiry != null) {
 if (rating > 4) unusedPercentage = 0.75;
 else unusedPercentage = 0.25;
 }
 }

!

TermLoanCapital

#riskAmount();
#duration();

Loan

RevolverCapital

#riskAmount();
#duration();

RCTLCapital

#riskAmount();
#duration();

CapitalStrategy

#loan : Loan
+calc(Loan loan)
#riskAmount();
#duration();

1

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 23 of 87

Motivation

A lot of condition logic can obscure any calculation, even a simple one. When that happens,
your calculation can be misunderstood by others and harder to maintain, debug and extend.
Strategy is a pattern that deals well with calculations. A context object obtains a Strategy object
and then delegates a calculation (or calculations) to that Strategy. This lightens the context class
by moving the conditional calculation logic to a small collection of independent calculation
objects (strategies), each of which can handle one of the various ways of doing the calculation.

 Does this sound like a pattern you’d refactor to a lot? It may, but in my experience, I don’t
refactor to Strategy that often. I certainly have refactored to it, but I find that a lot of calculation
logic I either write or come across isn’t sufficiently complicated to justify using Strategy. In
addition, when there is enough conditional logic to merit using the pattern, I have to consider
whether a Template Method would be a better choice. But using a Template Method assumes
that you can place the skeleton of your calculation in a base class, and have subclasses supply
some or all of the calculation details. That may or may not be possible given your situation. For
example, if you already have subclasses and the various ways of calculating something won’t
easily fit into those subclasses, you may not be able to Form Template Method [Fowler]. Or, you
may find that by placing calculations in separate subclasses, you limit your ability to swap one
calculation type for another at runtime, since it would mean changing the type of object a client is
working with, rather than simply substituting one Strategy object for another.

Once you do decide to refactor to Strategy, you have to consider how the calculation
embedded in each strategy class will get access to the variables it needs to do its calculation. To
accomplish that, I usually pass the context class as a reference to the Strategy object, and make
whatever variables are needed by each Strategy accessible via public methods on the context
class.

The final thing to consider is how your context class will obtain its Strategy. Whenever
possible, I like to shield client code from having to worry about both instantiating a Strategy
instance and passing it to a context’s constructor. Creation Methods can help with this: just
define one or more methods that return a context instance, properly outfitted with the appropriate
Strategy instance.

Communication Duplication Simplicity

Copious conditional logic
obscures the steps of a
calculation. Communicate the
steps clearly by separating each
calculation variety into its own
Strategy class. Then clarify
which variety of calculation your
object uses by writing code to
pass the appropriate Strategy to
the object for its use in
performing the calculation.

Conditional calculation code can
often contain duplicate
conditional statements that are
used to calculate various
variables in an algorithm.
Replace all of the conditional
logic by encapsulating each
variety of the calculation in its
own Strategy class.

Classes that contain a lot of
conditional logic are never
simple. But if a class contains
lots of conditional logic for
calculating something in a
variety of ways, it may also be
more complex than it needs to
be, as it knows too much.
Simplify the class by extracting
each variety of the calculation
into its own Strategy class and
then delegate to one of these
classes to obtain a calculation.

Mechanics

1. On a class (which we’ll call “A”) identify a calculation method, or helper methods to

such a method, that contain a lot of conditional logic. This class will be known as your
context class as it will be the context for a Strategy object.

2. Create a concrete class and name it based on the behavior performed by the chosen

calculation method. This will be your Strategy.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 24 of 87

You can append the word “Strategy” to the class name if you find it helps communicate
the purpose of this new type.

3. Apply Move Method [Fowler] to move the primary calculation method and any helper

methods to your Strategy class. If the code you move needs to obtain information from
A, pass A as a parameter to the primary calculation method or as a parameter to the
Strategy class’s constructor and make sure the information on A is publicly available.

You can alternatively pass the necessary information from A to the Strategy, without
passing a reference of A to the Strategy. This will result in less coupling between A and
your Strategy, but may require you to pass a lot of information. See Design Patterns
[GoF] for an in-depth discussion about communication between the context, A, and the
Strategy.

4. Create a field (which we’ll call “S”) in A for the Strategy and instantiate it.

5. Update the primary calculation method in A to delegate the calculation to S.

6. Compile and test

7. On the Strategy class, apply Replace Conditional with Polymorphism [Fowler] on the

primary calculation method and any helper methods you moved from A. It is best to do
this step slowly, by focusing on extracting one subclass at a time, then performing steps 8
and 9 below and then repeating this step. When finished, you will have substantially
reduced the conditional logic in your Strategy class and you will have defined concrete
Strategy classes for each variety of the calculation you started with.

Consider applying Form Template Method [Fowler] for your Strategy’s primary
calculation method. You may also make your original Strategy class abstract.

8. Add code to A to either use its internal logic to set the value of S or to allow an external

client to pass in a value for S.

If you go with the latter approach, let clients pass in a value for S via constructor calls if
clients won’t need to change S’s value at runtime. Otherwise, supply a setter method to let clients
set the value of S at runtime. For convenience, you can also do both. If clients will be able to pass
in a value of S to A, you’ll need to update the code for every existing client of A.

9. Compile and test.

Example

The example in the code sketch above deals with calculating capital for bank loans. It shows
a fair about of conditional logic that’s used in performing this calculation, although it is even less
conditional logic than was contained in the original code, which had to handle capital calculations
for 7 different loan profiles.

In the example, the context class is called Loan. We’ll be seeing how Loan’s method for
calculating capital can be strategized, i.e. delegated to a Strategy object. As you study the
example, you may wonder why Loan wasn’t just subclassed to support the three different styles
of capital calculations. That was an option, however, because the application that uses Loan
needed to change a Loan’s capital calculation at runtime, without changing the class type of the
Loan, it was better to use the Strategy pattern.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 25 of 87

1. We’ll begin by looking at the Loan class’s calcCapital() method and its helper methods
(note: I show a few tests for calcCapital() in step 6 below):

public class Loan ...

private double notional;
private double outstanding;
private int rating;
private double unusedPercentage;
private Date start;
private Date expiry;
private Date maturity;
private static final int MILLIS_PER_DAY = 86400000;

public double calcCapital() {
return riskAmount() * duration() * RiskFactor.forRiskRating(rating);

}
private double calcUnusedRiskAmount() {

return (notional - outstanding) * unusedPercentage;
}
private double duration() {

if (expiry == null)
return ((maturity.getTime() - start.getTime()) / MILLIS_PER_DAY) / 365;

else if (maturity == null)
return ((expiry.getTime() - start.getTime()) / MILLIS_PER_DAY) / 365;

else {
long millisToExpiry = expiry.getTime() - start.getTime();
long millisFromExpiryToMaturity = maturity.getTime() - expiry.getTime();
double revolverDuration = (millisToExpiry / MILLIS_PER_DAY) / 365;
double termDuration = (millisFromExpiryToMaturity / MILLIS_PER_DAY) / 365;
return revolverDuration + termDuration;

}
}
private double riskAmount() {

if (unusedPercentage != 1.00)
return outstanding + calcUnusedRiskAmount();

else
return outstanding;

}
public void setOutstanding(double newOutstanding) {

outstanding = newOutstanding;
}
private void setUnusedPercentage() {

if (expiry != null && maturity != null) {
if (rating > 4)

unusedPercentage = 0.95;
else

unusedPercentage = 0.50;
} else if (maturity != null) {

unusedPercentage = 1.00;
} else if (expiry != null) {

if (rating > 4)
unusedPercentage = 0.75;

else
unusedPercentage = 0.25;

}
}

2. The Strategy I’d like to define will handle the calcCapital() calculation. So I create a class
called CapitalStrategy.

public class CapitalStrategy {
}

3. Now I’m up to the hardest step: I need to move methods from Loan to CapitalStrategy. I
begin with the calcCapital() method. In this case, I don’t want to move this method, but
rather, copy it to CapitalStrategy:

public class CapitalStrategy {

public double calc() {
return riskAmount() * duration() * RiskFactor.forRiskRating(rating);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 26 of 87

}
}

That code won’t even compile, because CapitalStrategy doesn’t contain the methods it is
calling. No problem. I pass calc() a Loan parameter and update the code as follows:

public double calc(Loan loan) {

return loan.riskAmount() * loan.duration() * RiskFactor.forRiskRating(loan.rating);
}

That gets us closer, but the compiler still complains that the methods and variable I’m

accessing on Loan aren’t visible (i.e. they are private, not public). I change the visibility to
public and finally the compiler is happy. Later, I’ll be moving some of these public
methods/fields to CapitalStrategy or making them accessible via Loan getter methods.

Now I focus on moving each piece of the calculation from Loan to CapitalStrategy. The
method, riskAmount() (which is now public) is first on my radar screen.

public double riskAmount() {

if (unusedPercentage != 1.00)
return outstanding + calcUnusedRiskAmount();

else
return outstanding;

}

This method relies on other fields and methods within Loan. I study the code and see that the

field, outstanding, is used extensively in the Loan class, but the field, unusedPercentage,
along with the methods, setUnusedPercentage() and calcUnusedRiskAmout() are only
there to help the calcCapital() method. So I decide to move all of this code, with the
exception of the field, outstanding, to CapitalStrategy:

public class CapitalStrategy {

private Loan loan;
public double calc(Loan loan) {

this.loan = loan;
return riskAmount() * loan.duration() * RiskFactor.forRiskRating(loan.rating);

}
private double calcUnusedPercentage() {

if (loan.expiry != null && loan.maturity != null) {
if (loan.rating > 4)

return 0.95;
else

return 0.50;
} else if (loan.maturity != null) {

return 1.00;
} else if (loan.expiry != null) {

if (loan.rating > 4)
return 0.75;

else
return 0.25;

}
return 0.0;

}
private double calcUnusedRiskAmount() {

return (loan.notional - loan.outstanding) * calcUnusedPercentage();
}
public double riskAmount() {

if (calcUnusedPercentage() != 1.00)
return loan.outstanding + calcUnusedRiskAmount();

else
return loan.outstanding;

}
}

To make this compile, I need to make more fields on Loan public:

public class Loan ...

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 27 of 87

public double notional;
public double outstanding;
public int rating;
private double unusedPercentage; //replaced with calculation method on CapitalStrategy
public Date start;
public Date expiry;
public Date maturity;

By now I’m not happy having all these public fields. So I make getter methods for them and

update the CapitalStrategy code accordingly. After this, all I do is move the duration()
calculation over to CapitalStrategy and this step of the refactoring is done.
CapitalStrategy now looks like this:

public class CapitalStrategy {

private Loan loan;
private static final int MILLIS_PER_DAY = 86400000;
public double calc(Loan loan) {

this.loan = loan;
return riskAmount() * duration() * RiskFactor.forRiskRating(loan.getRating());

}
private double calcUnusedPercentage() {

if (loan.getExpiry() != null && loan.getMaturity() != null) {
if (loan.getRating() > 4) return 0.95;
else return 0.50;

} else if (loan.getMaturity() != null) {
return 1.00;

} else if (loan.getExpiry() != null) {
if (loan.getRating() > 4) return 0.75;
else return 0.25;

}
return 0.0;

}
private double calcUnusedRiskAmount() {

return (loan.getNotional() - loan.getOutstanding()) * calcUnusedPercentage();
}
public double duration() {

if (loan.getExpiry() == null)
return (

(loan.getMaturity().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

else if (loan.getMaturity() == null)
return (

(loan.getExpiry().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

else {
long millisToExpiry = loan.getExpiry().getTime() - loan.getStart().getTime();
long millisFromExpiryToMaturity =

loan.getMaturity().getTime() - loan.getExpiry().getTime();
double revolverDuration = (millisToExpiry / MILLIS_PER_DAY) / 365;
double termDuration = (millisFromExpiryToMaturity / MILLIS_PER_DAY) / 365;
return revolverDuration + termDuration;

}
}
public double riskAmount() {

if (calcUnusedPercentage() != 1.00)
return loan.getOutstanding() + calcUnusedRiskAmount();

else
return loan.getOutstanding();

}
}

4. Now I need to make a field in the Loan class for the CapitalStrategy class:

public class Loan…

private CapitalStrategy capitalStrategy = new CapitalStrategy();

5. And I’m finally ready to have Loan delegate its calculation of capital to CapitalStrategy’s
calc() method:

public double calcCapital() {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 28 of 87

return capitalStrategy.calc(this);
}

6. I can now compile and run my tests. Here are a few of the tests that ensure whether the capital
calculation works for various types of loan profiles:

public void testTermLoanCapital() {

Loan termLoan = Loan.newTermLoan(10000.00, startOfLoan(), maturity(), RISK_RATING);
termLoan.setOutstanding(10000.00);
assertEquals("Capital for Term Loan", 37500.00, termLoan.calcCapital(), penny);

}
public void testRevolverROC() {

Loan revolver = Loan.newRevolver(10000.00, startOfLoan(), expiry(), RISK_RATING);
revolver.setOutstanding(2000.00);
assertEquals("Capital for Revolver", 6000.00, revolver.calcCapital(), penny);

}
public void testRevolverTermROC() {

Loan rctl = Loan.newRCTL(10000.00, startOfLoan(), expiry(), maturity(),RISK_RATING);
rctl.setOutstanding(5000.00);
assertEquals("Capital for RCTL", 28125.00, rctl.calcCapital(), penny);

}

These tests, and similar ones, all run successfully.

7. At this point I’ve moved a lot of code out of the Loan class and into the CapitalStrategy
class, which now encapsulates the bulky conditional calculation logic. I want to tame this logic
by decomposing CapitalStrategy into several subclasses, one for each way we calculate
capital. I do this by applying Replace Conditional with Polymorphism [Fowler].

First, I identify a total of three different ways of doing the capital calculation, each of which
corresponds to a specific Loan profile: Term loan, Revolver or RCTL (a combination of a
Revolver, which converts to a Term Loan on an expiry date). I decide to start by creating a
subclass of CapitalStrategy that is capable of calculating capital for a Term Loan:

public class TermLoanCapital extends CapitalStrategy {
}

Now, I find the specific calculation code that applies to a Term Loan and push it down into the
new subclass:

public class TermLoanCapital extends CapitalStrategy {

protected double duration() {
return (

(loan.getMaturity().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

}
protected double riskAmount() {

return loan.getOutstanding();
}

}

I now push on to steps 8 and 9 of the refactoring, after which I’ll circle back to define, configure
and test two more concrete Strategy classes: RevolverCapital and RCTLCapital.

8. Now I need to configure the Loan class with the TermLoanCapital strategy when it is
applicable, so that I can test whether it works. To do this, I make the following modifications:

public class Loan...

private CapitalStrategy capitalStrategy;

protected Loan(double notional, Date start, Date expiry,
Date maturity, int riskRating, CapitalStrategy strategy) {
this.notional = notional;
this.start = start;

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 29 of 87

this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capitalStrategy = strategy;

}
public static Loan newRCTL(double notional, Date start, Date expiry,

Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new CapitalStrategy());

}
public static Loan newRevolver(double notional, Date start, Date expiry,

int rating) {
return new Loan(notional, start, expiry, null, rating, new CapitalStrategy());

}
public static Loan newTermLoan(double notional, Date start, Date maturity,

int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}

9. I compile and test and all goes well. Now I circle back to step 7, to define the additional
concrete Strategy classes, configure the Loan class to work with them and test everything. When
I’m done, almost all of the original conditional calculation logic is gone and I have three
Strategies for calculating capital:

public class Loan...

public static Loan newRCTL(double notional, Date start, Date expiry,
Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
public static Loan newRevolver(double notional, Date start, Date expiry,

int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

}
public static Loan newTermLoan(double notional, Date start, Date maturity,

int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}

public abstract class CapitalStrategy {

protected Loan loan;
protected static final int MILLIS_PER_DAY = 86400000;
public double calc(Loan loan) {

this.loan = loan;
return riskAmount() * duration() * RiskFactor.forRiskRating(loan.getRating());

}
protected abstract double duration();
protected abstract double riskAmount();

}

public class TermLoanCapital extends CapitalStrategy {
protected double duration() {

return (
(loan.getMaturity().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

}
protected double riskAmount() {

return loan.getOutstanding();
}

}

public class RevolverCapital extends CapitalStrategy {
private double calcUnusedPercentage() {

if (loan.getRating() > 4) return 0.75;
else return 0.25;

}
private double calcUnusedRiskAmount() {

return (loan.getNotional() - loan.getOutstanding()) * calcUnusedPercentage();
}
protected double duration() {

return (
(loan.getExpiry().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

}
protected double riskAmount() {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 30 of 87

return loan.getOutstanding() + calcUnusedRiskAmount();
}

}

public class RCTLCapital extends CapitalStrategy {
private double calcUnusedPercentage() {

if (loan.getRating() > 4) return 0.95;
else return 0.50;

}
private double calcUnusedRiskAmount() {

return (loan.getNotional() - loan.getOutstanding()) * calcUnusedPercentage();
}
protected double duration() {

long millisToExpiry = loan.getExpiry().getTime() - loan.getStart().getTime();
long millisFromExpiryToMaturity =

loan.getMaturity().getTime() - loan.getExpiry().getTime();
double revolverDuration = (millisToExpiry / MILLIS_PER_DAY) / 365;
double termDuration = (millisFromExpiryToMaturity / MILLIS_PER_DAY) / 365;
return revolverDuration + termDuration;

}
protected double riskAmount() {

return loan.getOutstanding() + calcUnusedRiskAmount();
}

}

Thinking I’m now done, I inspect the results of the refactoring. I wonder, “Is there anything left
to simplify or communicate better?” “Is there any duplication to remove?” The duration
calculations for the three strategies execute a similar formula: find the difference in time between
two dates, divide them by the number of milliseconds in a day, and divide that by 365. That
formula is being duplicated! To remove the duplication, I apply Pull Up Method [Fowler]:

public abstract class CapitalStrategy…

private static final int DAYS_PER_YEAR = 365;
protected double calcDuration(Date start, Date end) {

return ((end.getTime() - start.getTime()) / MILLIS_PER_DAY) / DAYS_PER_YEAR;
}

public class TermLoanCapital extends CapitalStrategy…
protected double duration() {

return calcDuration(loan.getStart(), loan.getMaturity());
}

public class RevolverCapital extends CapitalStrategy {
protected double duration() {

return calcDuration(loan.getStart(), loan.getExpiry());
}

public class RCTLCapital extends CapitalStrategy…
protected double duration() {

double revolverDuration = calcDuration(loan.getStart(), loan.getExpiry());
double termDuration = calcDuration(loan.getExpiry(), loan.getMaturity());
return revolverDuration + termDuration;

}

I compile, run the tests and everything is good. Now, for the moment, I’m done.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 31 of 87

Replace Implicit Tree with Composite*

You implicitly form a tree structure, using a
primitive representation, such as a String

Replace your primitive tree representation

with Composite

String orders = "<orders>";
orders += "<order number='123'>";
orders += "<item number='x1786'>";
orders += "carDoor";
orders += "</item>";
orders += "</order>";
orders += "</orders>";

TagNode orders = new TagNode("orders");
 TagNode order = new TagNode("order");
 order.addAttribute("number", "123");
 orders.add(order);
 TagNode item = new TagNode("item");
 item.addAttribute("number", "x1786");
 item.addValue("carDoor");
 order.add(item);
String xml = orders.toString();

!

Motivation

One problem with implicit tree construction is the tight coupling between the code that builds
the tree and how the tree is represented. Consider the example above, in which an XML
document is built using a String. The nodes on the built XML tree and the way that they are
formatted are combined in one place. While that may see simple, it actually makes it harder to
change the tree’s representation and forces every programmer to remember every tree
representation rule: like using single quotes for attributes or closing all open tags. I’ve seen
programmers fight many bugs that originated in primitive tree formatting mistakes.

A Composite encapsulates how a tree is represented. This means that a client only needs to
tell a Composite what to add to a tree and where to add it. When a client needs a representation
of the tree, it can ask the Composite to render it. This simpler arrangement leads to less error-
prone code.

But this doesn’t mean that you should always avoid using primitive tree construction. What if
your system doesn’t create many trees? In that case, why go to the trouble of creating a
Composite when some primitive tree construction code would do? If you later find that you or
others are creating more trees, you can refactor to a solution that simplifies the tree construction
perhaps by decoupling the tree-building code from the tree-representation code.

The choice may also involve your development speed. On a recent project, I was tasked with
generating an HTML page from XML data using an XSLT processor. For this task, I needed to
generate an XML tree that would be used in the XSLT transformation. I knew I could use a
Composite to build that tree, but I instead choose to build it with a String. Why? Because I was
more interested in going fast and facing every technical hurdle involved in doing the XSLT
transformation than I was in producing refined XML tree construction code. When I completed
the XSLT transformation, I when back to refactor the primitive tree construction code to use a
Composite, since that code was going to be emulated in many areas of the system.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 32 of 87

Communication Duplication Simplicity
The best tree-construction code
communicates the structure of a
tree without overwhelming
readers with unnecessary tree-
construction details. Primitive
tree-construction code exposes
too many details. Trees
composed using Composite
communicate better by hiding
tedious and repetitive tree-
construction tasks.

Code that manually builds a tree
often repeats the same set of
steps: format a node, add the
node to the tree and balance the
node with a corresponding node
or some such thing. Composite-
constructed trees minimize
duplication by encapsulating
repetitive instructions, like
formatting nodes and tree-
construction mechanics.

It’s easier to make mistakes
building trees manually than it is
to build trees using Composite.
Manually-constructed trees must
ensure that child nodes are
added correctly – for example, a
tag in an XML tree must have a
corresponding end tag. By
knowing how to construct
themselves, Composite-
constructed trees are simpler.

Mechanics

1. Identify the primitive tree-construction code you’d like to refactor.

2. Identify node types for your new Composite. Keep it simple: test-first design one or more

concrete node types and don’t worry about creating an abstract node type (you may not
need one). Create a method to validate the contents of your budding Composite.

3. Give your nodes the ability to have children. Do not give nodes the ability to remove
children if your application only adds nodes and never removes them. Compile and test.

4. If needed, give clients a way to set attributes on nodes. Compile and test.

5. Replace the original tree-construction code with calls to your new Composite. Compile
and test.

Example

1. We’ll begin with the XML example from the code sketch above:

String orders = "<orders>";
orders += "<order number='123'>";
orders += "<item number='x1786'>";
orders += "carDoor";
orders += "</item>";
orders += "</order>";
orders += "</orders>";

2. In this case, every node in the tree has an open tag (“<orders>”) and close tag (“</orders>”).
While some of the nodes have attributes and values, I identify just one node type that we need to
produce a Composite version of this tree. I test-first design a node type called TagNode, give this
class a way to set its name and create a toString() method to return the resulting XML:

public void testOneNodeTree() {

String expectedResult =
"<orders>" +
"</orders>";
TagNode orders = new TagNode("orders");
assertXMLEquals("xml comparison", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 33 of 87

public TagNode(String name) {
tagName = name;

}
public String toString() {

String result = new String();
result += "<" + tagName + ">";
result += "</" + tagName + ">";
return result;

}
}

3. Next, I give TagNode the ability to have children.

public void testAddingChildrenToTree() {

String expectedResult =
"<orders>" +

"<order>" +
"<item>" +
"</item>" +

"</order>" +
"</orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode item = new TagNode("item");
orders.add(order);
order.add(item);
assertXMLEquals("adding children", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;
private List children = new ArrayList();
public TagNode(String name) {

tagName = name;
}
public void add(TagNode childNode) {

children.add(childNode);
}
public String toString() {

String result = new String();
result += "<" + tagName + ">";
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
result += "</" + tagName + ">";
return result;

}
}

4. Now the Composite must be extended to support XML attributes or values or both. Again, I do
this by letting my test code drive the development process:

public void testTreeWithAttributesAndValues() {

String expectedResult =
"<orders>" +

"<order>" +
"<item number='12660' quantity='1'>" +
"Dog House" +
"</item>" +
"<item number='54678' quantity='1'>" +
"Bird Feeder" +
"</item>" +

"</order>" +
"</orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode item1 = new TagNode("item");
item1.addAttribute("number", "12660");
item1.addAttribute("quantity", "1");
item1.setValue("Dog House");

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 34 of 87

TagNode item2 = new TagNode("item");
item2.addAttribute("number", "54678");
item2.addAttribute("quantity", "1");
item2.setValue("Bird Feeder");
orders.add(order);
order.add(item1);
order.add(item2);
assertXMLEquals("attributes&values", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;
private String tagValue = "";
private String attributes = "";
private List children = new ArrayList();
public TagNode(String name) {

tagName = name;
}
public void add(TagNode childNode) {

children.add(childNode);
}
public void addAttribute(String name, String value) {

attributes += (" " + name + "='" + value + "'");
}
public void addValue(String value) {

tagValue = value;
}
public String toString() {

String result = new String();
result += "<" + tagName + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagValue.equals(""))

result += tagValue;
result += "</" + tagName + ">";
return result;

}
}

5. In the final step, I replace the original primitive tree-construction code with the
Composite code, compile and test:

TagNode orders = new TagNode("orders");

TagNode order = new TagNode("order");
order.addAttribute("number", "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 35 of 87

Encapsulate Composite with Builder**

Your Composite code exposes too many details, forcing clients to
create, format, add and remove nodes and handle validation logic

Encapsulate the Composite with a simpler,

more intention-revealing Builder

TagNode orders = new TagNode("orders");
 TagNode order = new TagNode("order");
 order.addAttribute("number", "123");
 orders.add(order);
 TagNode item = new TagNode("item");
 item.addAttribute("number", "x1786");
 item.addValue("carDoor");
 order.add(item);
String xml = orders.toString();

XMLBuilder orders = new XMLBuilder("orders");
 orders.addBelow("order");
 orders.addAttribute("number", "123");
 orders.addBelow("item");
 orders..addAttribute("number", "x1786");
 orders.addValue("carDoor");
String xml = orders.toString();

!

Motivation

I’m always interested in simplifying client code: I want it to read as clearly as English. So
when it comes to creating really simple tree-construction code, I like the Builder pattern even
better than the Composite pattern. Builders give clients a clean and easy-to-use interface while
hiding details about how the nodes of a Composite are hooked together and what accompanying
steps must take place during construction.

If you study a typical piece of client code that creates some tree structure, you’ll often find
node creation and setup logic mixed together with tree creation and validation logic. A Builder-
based alternative can simplify such code by taking on the burden of node creation and tree
validation logic and let client code concentrate on what is important: building the tree. The result
of refactoring to Builder is often simpler, more intention-revealing client code.

I use Builders a lot with XML. XML documents represent trees, so they work well with both
the Composite and Builder patterns. But Composite-only solutions for creating an XML tree
expose too many details. XML Builders, by contrast, offer a nice way to have your cake and eat it
too: clients talk to a simple XML Builder interface, while the XML Builder itself relies on a
Composite for representing the XML tree. The example below will show you how this is done. In
addition, I’ve included an extended example which shows how an XML Builder was updated to
implement and encapsulate performance logic used in rendering a Composite of XML nodes to a
string.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 36 of 87

Communication Duplication Simplicity

Client code that creates a tree
needs to communicate the
essence of the activity: what is
added to the tree, and where it is
added. A Composite solution
doesn’t communicate this clearly
because it exposes too many
details. By handling the tree-
construction details, Builders
enable client code to
communicate clearly.

Composite-based tree-
construction code is filled with
calls to create new nodes and
add them to trees. Builder code
removes this duplication by
handling node creation and
simplifying how nodes are added
to a tree.

With a Composite, a client must
know what, where and how to
add items to a tree. With a
Builder, a client needs to know
only what and where to add to
the tree; the Builder takes care
of the rest. Builders often
simplify client code by handling
the mechanics of tree
construction.

Mechanics

1. Identify the Composite that you would like to encapsulate.

2. Create a new Builder class:

• Give the new class a private instance variable for the encapsulated Composite.
• Initialize the Composite in a constructor.
• Create a method to return the results of doing a build.

3. Create intention-revealing methods on your Builder for every type of node that gets

added to your Composite. These methods will add new nodes to an inner Composite and
keep track of the state of the tree.

You may create additional methods to let users set attributes on nodes, or you can let
users add new nodes and set attributes on them using one convenient method call.

4. Replace the tree-construction Composite calls with calls to the Builder. Compile and test.

Example

1. We’ll begin with the Composite code that was shown in the code sketch above. As I study this
code, I realize that it contains more detail than it needs to:

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttribute("number", "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

2. I define an XMLBuilder class, encapsulate the original Composite, initialize it and write a
toString() method to obtain the results of a build. I do this all from test code, which helps me
confirm that my new class produces correct XML.

public void testOneElementTree() {
String expected =
"<orders>" +
"</orders>";
XMLBuilder builder = new XMLBuilder("orders");
assertXMLEquals("one element tree", expected, builder.toString());

}

Now, my Builder looks like this:

public class XMLBuilder {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 37 of 87

private TagNode root;
public XMLBuilder(String rootName) {

root = new TagNode(rootName);
}
public String toString() {

return root.toString();
}

}

3. Next, I create methods for every type of node that gets added to the Composite. In this case
it’s trivial: there are only TagNodes. But I still have to consider the different ways in which
clients will add nodes to the inner Composite. I begin with the case of adding nodes as children
of parent nodes:

public void testAddBelow() {
String expected =
"<orders>" +

"<order>" +
"<item>" +
"</item>" +

"</order>" +
"</orders>";
XMLBuilder builder = new XMLBuilder("orders");
builder.addBelow("order");
builder.addBelow("item");
assertXMLEquals("adding below", expected, builder.toString());

}

This leads to the creation of the addBelow() method, along with a few changes to the
XMLBuilder class:

public class XMLBuilder {
private TagNode root;
private TagNode current;
public XMLBuilder(String rootName) {

root = new TagNode(rootName);
current = root;

}
public void addBelow(String child) {

TagNode childNode = new TagNode(child);
current.add(childNode);
current = childNode;

}
public String toString() {

return root.toString();
}

}

Next I must enable the XMLBuilder to add a node at the same level as an existing node (i.e., not
as a child, but as a sibling). This leads to more test and XMLBuilder code:

public void testAddBeside() {

String expected =
"<orders>" +

"<order>" +
"<item>" +
"</item>" +
"<item>" +
"</item>" +

"</order>" +
"</orders>";
XMLBuilder builder = new XMLBuilder("orders");
builder.addBelow("order");
builder.addBelow("item");
builder.addBeside("item");
assertXMLEquals("adding beside", expected, builder.toString());

}

public class XMLBuilder {

private TagNode root;

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 38 of 87

private TagNode current;
private TagNode parent;
public XMLBuilder(String rootName) {

root = new TagNode(rootName);
current = root;
parent = root;

}
public void addBelow(String child) {

TagNode childNode = new TagNode(child);
current.add(childNode);
parent = current;
current = childNode;

}
public void addBeside(String sibling) {

TagNode siblingNode = new TagNode(sibling);
parent.add(siblingNode);
current = siblingNode;

}
public String toString() {

return root.toString();
}

}

I continue on this approach until I have a working Builder that satisfies all of my tests. In some
cases, adding new behavior to the XMLBuilder is trivial, since it merely requires delegating calls
to the inner Composite. For example, here is how XML attributes are implemented:

public void testAddBelowWithAttribute() {

String expected =
"<orders>" +

"<order number='12345' quantity='2'>" +
"</order>" +

"</orders>";
builder = createBuilder("orders");
builder.addBelow("order");
builder.addAttribute("number", "12345");
builder.addAttribute("quantity", "2");
assertXMLEquals("built xml", expected, builder.toString());

}

public class XMLBuilder. . .
public void addAttribute(String name, String value) {

current.addAttribute(name, value);
}

}

4. Now it is time to replace the original client code that used the Composite with the
XMLBuilder. I do this one line at a time, removing some lines and rewriting others. The final code
makes no references to the now encapsulated Composite, TagNode.

XMLBuilder orders = new XMLBuilder("orders");
orders.addBelow("order");
orders.addAttribute("number", "123");

orders.addBelow("item");
orders.addAttribute("number", "x1786");
orders.addValue("carDoor");

Notice how the calls to the XMLBuilder are generic – the methods and data passed to them
reveal nothing about the underlying structure of the tree. Should we need to work with a variety
of Builders, we won’t have to change very much client code.

Extended Example

I could not resist telling you about a performance improvement that was made to the above-
mentioned XMLBuilder class, since it reveals the elegance and simplicity of the Builder pattern.
Some of my colleagues at a company called Evant had done some profiling of our system and
they’d found that a StringBuffer used by the XMLBuilder’s encapsulated composite

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 39 of 87

(TagNode) was causing performance problems. This StringBuffer is used as a Collecting
Parameter – it is created and then passed to every node in a composite of TagNodes in order to
produce the results returned from calling TagNode’s toString(). (To see how this works, see the
example in Move Accumulation to Collecting Parameter).

The StringBuffer that was being used in this operation was not instantiated with any
particular size, which means that as more and more XML is added to the StringBuffer, it must
automatically grow when it can no longer hold all its data. That’s fine, since the StringBuffer
class was written to be able to automatically grow. But there is a performance penalty one pays
when you allow a StringBuffer to automatically grow: i.e. when it has to grow, it has work to
do to transparently increase its size. That performance penalty in the Evant system was not
acceptable and so the team needed to make an improvement.

The solution was to know what size the StringBuffer needed to be before instantiating it,
and then to instantiate it with the proper size so that it would not need to grow. How could we
compute this size? Easy. As each node gets added to an XML tree via an XMLBuilder, the
builder increments a buffer size based on the size of the strings in the node. Then the final
computed buffer size could be used when instantiating the StringBuffer. Let’s see how this
was implemented.

As usual, we start by writing a test. The test below will build an XML tree by making calls to
an XMLBuilder, then it will obtain the size of the resulting XML string returned by the builder
and finally, it will compare the size of the string with the computed buffer size for use by a
StringBuffer:

public void testToStringBufferSize() {

String expected =
"<orders>" +

"<order number='123'>" +
"</order>" +

"</orders>";
builder = createBuilder("orders");
builder.addBelow("order");
builder.addAttribute("number", "123");

int stringSize = builder.toString().length();
int computedSize = ((XMLBuilder)builder).bufferSize();
assertEquals("buffer size", stringSize, computedSize);

}

To pass this test and others like it, the following XMLBuilder attributes and methods were added
or updated:

public class XMLBuilder {

private int outputBufferSize;
private static int TAG_CHARS_SIZE = 5;
private static int ATTRIBUTE_CHARS_SIZE = 4;

public void addAttribute(String name, String value) {
// logic for adding an attribute to a tag
incrementBufferSizeByAttributeLength(name, value);

}
public void addBelow(String child) {

// logic for adding a Tag below another Tag
incrementBufferSizeByTagLength(child);

}
public void addBeside(String sibling) {

// logic for adding a Tag beside another Tag
incrementBufferSizeByTagLength(sibling);

}
public void addBesideParent(String uncle) {

// logic for adding a Tag beside the current Tag’s parent
incrementBufferSizeByTagLength(uncle);

}
public void addValue(String value) {

// logic for adding a value to a node
incrementBufferSizeByValueLength(value);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 40 of 87

}
public int bufferSize() {

return outputBufferSize;
}
private void incrementBufferSizeByAttributeLength(String name, String value) {

outputBufferSize += (name.length() + value.length() + ATTRIBUTE_CHARS_SIZE);
}
private void incrementBufferSizeByTagLength(String tag) {

int sizeOfOpenAndCloseTags = tag.length() * 2;
outputBufferSize += (sizeOfOpenAndCloseTags + TAG_CHARS_SIZE);

}
private void incrementBufferSizeByValueLength(String value) {

outputBufferSize += value.length();
}
protected void init(String rootName) {

// logic for initializing the builder and root node
outputBufferSize = 0;
incrementBufferSizeByTagLength(rootName);

}
}

The changes made to the XMLBuilder are transparent to the users of the builder, as it

encapsulates this new performance logic. The only additional change must be made to the
XMLBuilder’s toString() method, so that it can instantiate a StringBuffer of the correct
size, and pass it on to the root TagNode, which will accumulate the contents of the XML tree. To
make that happen, the toString() method was changed from

public String toString() {

return root.toString();
}

to:

public String toString() {
return root.toStringHelper(new StringBuffer(outputBufferSize));

}

And that was it. The tests passed and the XMLBuilder was now significantly faster.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 41 of 87

Extract Special-Case Logic into Decorators

Your classes or methods have
optional or special-case processing logic

Retain core logic but extract optional or

 special-case logic into Decorators

CarRental

+float() : calcPrice
+getDaysRented() : int
+getModel() : Model
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+setInsurance(rate : float) : void
+setRefuelOnReturn(pricePerGallon : float) : void

public float calcPrice() {
 float price = (model.price * days);
 if (hasInsurance)
 price += insuranceAmount();
 if (hasRefuelOnReturn)
 price += refuelPrice();
 return price;
}

«Interface»
Rental

+calcPrice() : float
+getDaysRented() : int
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

CarRental

+calcPrice() : float
+getDaysRented() : int
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

CarRentalDecorator

+calcPrice() : float
+getDaysRented() : int
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

#rental : Rental

Insurance

-insuranceAmount() : float
+calcPrice() : float

RefuelOnReturn

-refuelPrice() : float
+calcPrice() : float

1

public float calcPrice() {
 return rental.calcPrice() + insuranceAmount();
}

!

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 42 of 87

Motivation

Decorator is one of my favorite Patterns. It is simple and elegant, but I have to resist
overusing it. The fact is, many problem chunks of code simply don’t need to be refactored to use
Decorator. Simpler solutions are often better. However, there is a time and place for this
refactoring, and when you do use it to solve the right problems, it can add a great deal of clarity
and simplicity to your design.

So what are the types of problems that merit this refactoring? Glad you asked. Let’s look at
an example. Consider an Invoice class that is responsible for keeping track of payment
information for a customer invoice. Most invoices are simple - some dollar amount is owed, and
all the Invoice object has to do is calculate the amount owed. But what happens when the amount
owed is overdue or if a special discount must be applied because the customer is a preferred
customer? Those are two special conditions that the Invoice’s calcAmountOwed() method will
have to deal with. No big deal – we probably still don’t need a fancy Decorator to clean up the
small amount of conditional logic in Invoice’s calcAmountOwed() method.

But what happens when we add more special conditions to calcAmountOwed()? As more
special conditions are added, the Invoice class gets more complex: it holds onto more instance
variables, it supports more getter and setter methods for handling special conditions and its
calculation logic gets longer and more involved.

So now we have a more complex Invoice class. Do we need it? What happens if you
observe that most of the time the system needs to work with the simplest of Invoice objects – no
special conditions, just a simple dollar amount that some customer owes. There are a few places
in the system where the special conditions are needed, but not many. So why mix this some-of-
the-time logic with your core logic? Keeping this logic together just makes your class more
heavyweight, harder to understand and harder to maintain. This is good reason to refactor to
Decorator.

What are other conditions under which this refactoring makes sense? Say your code is calling
special methods on related objects, but you’d really like to have your code talk to one method on
a common interface and handle the special stuff behind the scenes. Essentially, you are trying to
make your processing logic polymorphic. So this may be a good place to refactor to Decorator,
but maybe not. If you can remove all of the client calls to special methods and replace them with
a single intention-revealing method, your code will be simpler and easier to understand. But
what will you have to implement to make this possible?

There is some work involved in implementing this refactoring. In Java, refactoring to
Decorator involves creating a Decorator class and special-purpose concrete Decorator subclasses
as well as producing instantiation code that will wrap objects with the appropriate Decorator(s).
This is a fair amount of work. It will make sense to do this only if you have more than one or two
chunks of special behavior and/or you can really simplify your design with this refactoring.

Communication Duplication Simplicity
Some code just doesn't have to
be run very often. But if you
lump that code in with code that
does have to be run often, you
don't communicate what is and
what is not important.
Decorators give you a way to
communicate what is core code
from what is optional.

As logic gets more complicated,
you often see code that tries to
accommodate many
combinations of behavior. This
can lead to a lot of duplicate
code. Decorators offer a better
way to handle diverse
combinations of behavior without
duplicating code.

Code that mixes together the
essential with the optional isn’t
as simple as code that contains
solely what is essential. On the
other hand, Decorators aren't
always simple to use when you
have to worry about the order in
which you add them.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 43 of 87

Mechanics

1. On some class (we’ll call it “A”) find an algorithm that is bulky with optional or special-

case processing logic. Choose a piece of logic to extract.

2. Create an interface (we’ll call it “IA”) composed of all of A’s public methods and make
A implement that interface.

3. Create a class that implements the IA interface and name this class after the optional or

special-case logic you chose. This will be your first concrete Decorator.

Don’t worry about creating an abstract Decorator at this point. Abstract Decorators are
only needed when you have multiple concrete Decorators that need to share part of their
implementation.

4. In your new Decorator, create an instance variable of type IA (we’ll call it “delegate”)

and let users set it from a constructor argument.

5. For each method defined by your Decorator, forward each method call to the same
method on delegate.

6. Test that your Decorator works: create a new instance of A, decorate it with an instance

of your new Decorator and assert that it works just like an instance of A.

7. Now move the piece of logic you chose in step 1 to your new Decorator. This step may
require you to make changes to IA and A that let the moved logic function without
duplication of state or behavior.

8. Test that your Decorator still works: create an instance of A, decorator it with an instance

of your Decorator and assert that it works just like an instance of A.

9. Repeat for any other Decorators you would like to create. As you do this, it is best to
factor out common Decorator code into an abstract Decorator class. As soon as you have
created more than one Decorator, test that decorating objects with multiple Decorators
work.

You have to be very careful with supporting multiple Decorators. It is best to have
Decorators be so independent of each other that they can be added to objects in any
combination. In practice, however, that may not be possible, in which case you can write
Creation Methods to give access to objects decorated in various ways.

10. Adjust client code to refer to IA instead of A, and decorate instances of A where
necessary.

Example

If you’ve ever rented a car, you know that you can rent different types of cars with different rental
options, such as an insurance or no-insurance option, a refuel or no-refuel option, one driver or
additional drivers, limited miles or unlimited miles and so forth.

We’ll be looking at a CarRental class that can handle just two rental options: insurance
and the refuel option. We’ll be refactoring this code to use Decorator to show how this
refactoring is done. However, if you carefully study the Before Code, you may wonder if the code
is complicated enough to justify this refactoring. In my opinion, it isn’t. I’d prefer if the Before

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 44 of 87

Code were harder to follow, perhaps having to handle 3 or more rental options, which could be
combined in different ways. But if the example contained all of that code, it might span 5 pages
of code. So please use your imagination and consider that CarRental is more complex than it is in
this example.

1. We begin with the CarRental class and it’s calcPrice() method. The optional or special-
case logic from calcPrice() is highlighted in bold:

class CarRental {
protected float fuelConsumed;
protected int days;
protected Model model;
protected float insuranceRate;
protected boolean hasInsurance;
protected boolean hasRefuelOnReturn;
protected float refuelPrice;

public CarRental(Model m, int rentalDays) {
model = m;
days = rentalDays;
hasInsurance = false;
hasRefuelOnReturn = false;

}
public float calcPrice() {

float price = (model.price * days);
if (hasInsurance)

price += insuranceAmount();
if (hasRefuelOnReturn)

price += refuelPrice();
return price;

}
public int getDaysRented() {

return days;
}
public Model getModel() {

return model;
}
public float getFuelConsumed() {

return fuelConsumed;
}
public void setFuelConsumed(float amount) {

fuelConsumed = amount;
}
private float insuranceAmount() {

return insuranceRate * getDaysRented();
}
public void setInsurance(float rate) {

insuranceRate = rate;
hasInsurance = true;

}
private float refuelPrice() {

return(getModel().fuelCapacity - getFuelConsumed()) * refuelPrice;
}
public void setRefuelOnReturn(float pricePerGallon) {

refuelPrice = pricePerGallon;
hasRefuelOnReturn = true;

}
}

class Model {
public float fuelCapacity;
public float price;
public String name;

public Model(float fuelCapacity, float price, String name) {
this.fuelCapacity = fuelCapacity;
this.price = price;
this.name = name;

}
}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 45 of 87

In CarRental’s calcPrice() method you can see that the algorithm handles cases in which
a rental car has insurance or the refuel on return option or both. Below, I show how 3 different
CarRental instances may be created: one that uses none of the special options, one that uses
insurance and one that uses both insurance and the refuel option:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
CarRental r1 = new CarRental(m, 5);
assert(r1.calcPrice() == 250.0f);

CarRental r2 = new CarRental(m, 5);
r2.setInsurance(12.5f);
assert(r2.calcPrice() == 312.5f);

CarRental r3 = new CarRental(m, 5);
r3.setInsurance(12.5f);
r3.setRefuelOnReturn(3.75f);
assert(r3.calcPrice() == 350.0f);

We will see how the above client code changes after we do the refactoring. Our task now is
to choose which piece of special-case logic we want to extract from CarRental’s calcPrice()
method. I will choose the insurance option.

2. Now I must create a common interface to be implemented by the CarRental class and any new
Decorators that we create. This interface must be composed of all of CarRental’s public methods,
since we want existing client code to communicate with CarRental instances (or decorated
CarRental instances) using this new interface. After creating the interface, we make CarRental
implement it:

interface Rental{

public float calcPrice();
public int getDaysRented();
public Model getModel();
public float getFuelConsumed();
public void setFuelConsumed(float amount);
public void setInsurance(float rate);
public void setRefuelOnReturn(float pricePerGallon);

}

class CarRental implements Rental. . .

3. Next, I’ll create a concrete Decorator called Insurance. The Insurance Decorator will be used
to add an insurance option to CarRental instances. Insurance will also implement the Rental
interface:

class Insurance implements Rental {

public float calcPrice() {}
public int getDaysRented() {}
public Model getModel() {}
public float getFuelConsumed() {}
public void setFuelConsumed(float amount) {}
public void setInsurance(float rate) {}
public void setRefuelOnReturn(float pricePerGallon) {}

}

4. The next step is to give Insurance a Rental instance variable and let users set that instance from
a constructor:

class Insurance implements Rental. . .

private Rental rental;
public Insurance(Rental rental) {

this.rental = rental;
}

5. Now, each of Insurance’s methods will forward their method calls to the rental instance
variable:

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 46 of 87

class Insurance implements Rental {

private Rental rental;
public Insurance(Rental rental) {

this.rental = rental;
}
public float calcPrice() {

return rental.calcPrice();
}
public int getDaysRented() {

return rental.getDaysRented();
}
public Model getModel() {

return rental.getModel();
}
public float getFuelConsumed() {

return rental.getFuelConsumed();
}
public void setFuelConsumed(float amount) {

rental.setFuelConsumed(amount);
}
public void setInsurance(float rate) {

rental.setInsurance(rate);
}
public void setRefuelOnReturn(float pricePerGallon) {

rental.setRefuelOnReturn(pricePerGallon);
}

}

6. I’ll now test that the Insurance Decorator works:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental ford = new CarRental(m, 5);
ford.setInsurance(12.5f);
int fordPrice = ford.calcPrice();

Rental insuredFord = new Insurance(new CarRental(m, 5));
insuredFord.setInsurance(12.5f);
int insuredFordPrice = insuredFord.calcPrice();
assert(fordPrice == insuredFordPrice);

7. Next, I move the insurance logic from CarRental’s calcPrice() method and place it in the
Insurance Decorator. This involves moving insurance-related variables and methods from
CarRental to Insurance. It also provides an opportunity for simplifying the Rental interface, since
CarRental’s setInsurance(float rate) method can be replaced by an insuranceRate
parameter being passed to an Insurance constructor:

interface Rental{
public float calcPrice();
public int getDaysRented();
public Model getModel();
public float getFuelConsumed();
public void setFuelConsumed(float amount);
public void setInsurance(float rate);
public void setRefuelOnReturn(float pricePerGallon);

}

class CarRental implements Rental {
protected float insuranceRate;
protected boolean hasInsurance;

public CarRental(Model m, int rentalDays) {
model = m;
days = rentalDays;
hasInsurance = false;
hasRefuelOnReturn = false;

}
public float calcPrice() {

float price = (model.price * days);
if (hasInsurance)

price += insuranceAmount();

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 47 of 87

if (hasRefuelOnReturn)
price += refuelPrice();

return price;
}
private float insuranceAmount() {

return insuranceRate * getDaysRented();
}
public void setInsurance(float rate) {

insuranceRate = rate;
hasInsurance = true;

}
}

Moving insurance logic to the Insurance Decorator involves:

• replacing the setInsurance(float rate) method with a constructor argument
• creating an instance variable, called rate, to hold the insurance amount
• creating a copy of the old CarRental method, insuranceAmount()
• updating the calcPrice() method to add the computed insurance amount to the rate

computed by the delegate variable, rental.

class Insurance implements Rental {

private float rate;
private Rental rental;

public Insurance(Rental rental, float insuranceRate) {
this.rental = rental;
rate = insuranceRate;

}

private float insuranceAmount() {
return rate * rental.getDaysRented();

}
public float calcPrice() {

return rental.calcPrice() + insuranceAmount();
}
public void setInsurance(float rate) {

rental.setInsurance(rate);
}

}

8. I now test the Insurance Decorator:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental insuredFord = new Insurance(new CarRental(m, 5), 12.5f);
float insuredFordPrice = insuredFord.calcPrice();
assert(insuredFordPrice == 312.5f);

9. I repeat the above steps to turn CarRental’s refueling rental option into a Decorator. This
further simplifies the CarRental class, which can now be decorated when necessary. In the code
below, you can see the reduction of CarRental’s responsibilities by looking at the reduction of its
public methods and the size of its calcPrice() method. In addition, since we now have two
Decorators, it makes sense to factor out common behavior into an abstract Decorator superclass.

interface Rental{
public float calcPrice();
public int getDaysRented();
public float getFuelConsumed();
public void setFuelConsumed(float amount);
public Model getModel();

}

class CarRentalDecorator implements Rental {
protected Rental rental;
protected CarRentalDecorator(Rental r) {

rental = r;
}
public float calcPrice() {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 48 of 87

return rental.calcPrice();
}
public int getDaysRented() {

return rental.getDaysRented();
}
public float getFuelConsumed() {

return rental.getFuelConsumed();
}
public void setFuelConsumed(float amount) {

rental.setFuelConsumed(amount);
}
public Model getModel() {

return rental.getModel();
}

}

class Insurance extends CarRentalDecorator {
protected float rate;

public Insurance(Rental r, float rate) {
super(r);
this.rate = rate;

}
private float insuranceAmount() {

return rate * rental.getDaysRented();
}
public float calcPrice() {

return rental.calcPrice() + insuranceAmount();
}

}

class RefuelOnReturn extends CarRentalDecorator {
private float refuelPrice;
public RefuelOnReturn(Rental r, float refuelPrice) {

super(r);
this.refuelPrice = refuelPrice;

}
private float refuelPrice() {

return(rental.getModel().fuelCapacity - rental.getFuelConsumed()) * refuelPrice;
}
public float calcPrice() {

return rental.calcPrice() + refuelPrice();
}

}

We must now test that multiple CarRental Decorators work. Here’s how:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental insuredFord = new Insurance(new CarRental(m, 5), 12.5f);
Rental refuelInsuredFord = new RefuelOnReturn(insuredFord, 3.75f);
float price = refuelInsuredFord.calcPrice();
assert(price == 350.0f);

Rental refuelFord = new RefuelOnReturn(new CarRental(m, 5), 3.75f);
Rental insuredRefuelFord = new Insurance(refuelFord, 12.5f);
float price = insuredRefuelFord.calcPrice();
assert(insuredFordPrice == 350.0f);

10. We change client code that looked like this:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
CarRental r1 = new CarRental(m, 5);
r2.setInsurance(12.5f);

to code that looks like this:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental r1 = new Insurance(new CarRental(m, 5), 12.5f);

The refactored version of CarRental came out to be 34 lines longer than the original code. That
may or may not happen when you do this refactoring – it all depends on the kind of code you’ll

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 49 of 87

be replacing with Decorator. If it is complex conditional code, chances are that adding Decorator
may decrease the lines of code. But in any event, introducing Decorator into your system should
make your code simpler and easier to understand. It may even help you reduce duplication if
your code must handle numerous special-case combinations of behavior.

Let me finish by repeating what I said at the beginning of this refactoring: please don’t overuse
the Decorator pattern. If you’d like to see an excellent example of using Decorator in a design,
study the Decorator code in the extensions package of the JUnit testing framework
(http://www.junit.org).

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 50 of 87

Replace Hard-Coded Notifications with Observer*

Your class or numerous subclasses perform
custom object notifications at designated times

Replace your custom notification code

with the Observer pattern

TextTestResult

+addError(...)
+addFailure(...)

UITestResult

-fRunner : TestRunner
+addError(...)
+addFailure(...)

SwingUITestResult

-fRunner : TestRunner
+addError(...)
+addFailure(...)

TestResult

+addError(...)
+addFailure(...)
+run(...)

swingui.TestRunner

+run(...)
+createTestResult(...)

«Instantiates»

textui.TestRunner

+run(...)
+createTestResult(...)

ui.TestRunner

+run(...)
+createTestResult(...)

TestResult

+addListener(:TestListener)
+addError(...)
+addFailure(...)
+run(...)

-Vector fListeners
TestListener

+addError(...)
+addFailure(...)

*

swingui.TestRunner

+run(...)
+createTestResult(...)

textui.TestRunner

+run(...)
+createTestResult(...)

ui.TestRunner

+run(...)
+createTestResult(...)

!

«Instantiates»«Instantiates»

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 51 of 87

Motivation

The Observer pattern is popular. Many programmers know it well and use it often. But the
trick is to learn when you actually need to use Observer and when you don’t.

Consider under what circumstances the authors of Design Patterns suggest using Observer
(see Design Patterns, page 294):

• When an abstraction has two aspects, one dependent on the other. Encapsulating these
aspects in separate objects lets you vary and reuse them independently.

• When a change to one object requires changing others, and you don’t know how many
objects need to be changed.

• When an object should be able to notify other objects without making assumptions about
who these objects are. In other words, you don’t want these objects tightly coupled.

Now, what happens when you do know the object you want to update and it isn’t necessarily

to have loose coupling with that object? For example, class A needs to update objects of type B,
based on some event. Since this is a notification responsibility, you may want to implement a
solution using the Observer pattern (or Java’s Listeners -- essentially the same idea). But do you
really need to go that far? Could Observer be too heavyweight a solution given this example?
What if you simply wrote code in class A that would notify B objects at appropriate times?

Certainly that could work just fine, until objects of type C also need to be notified about A’s
events. You could then experiment with your code. See if adding more hard-coded notification
logic in class A overcomplicates the class. If it doesn’t, you’ve solved your immediate need
without writing much new code.

Eventually, class A’s notification responsibilities may grow. As the responsibilities grow,
you must observe your own interactions with the code. Ask yourself questions like:

• Am I finding duplicate notification code?
• Am I creating relatively dumb subclasses just to satisfy new notification needs?
• Is my notification logic becoming too complex?
• Is it awkward to pass in object references to class A just for the purpose of notification?

The answers to these questions may lead you to refactor to Observer. Doing so should lead to

simpler, smaller and easier-to-read code. Just remember that once you do decide to refactor to
Observer, try to do so in the simplest way possible. For example, if your observers will never
need to stop getting notifications, do not write the removeObserver() code on your Subject class -
- it would only be wasted code that no one uses.

Communication Duplication Simplicity
Hard-coded object notifications
enable runtime collaborations,
but the code doesn’t
communicate this very well:
objects get passed into
constructors, and notifications
happen in random methods.
Compare this to a class that
implements the Observer pattern
– both who can observe its
events and when they get
notified is clearly communicated
in the class declaration.

If you are compelled to write
special code for every class that
must be notified at runtime, you
can easily produce more code
than you need, perhaps resulting
in parallel or near-parallel class
hierarchies. For only a few
notifications, this is no big deal.
But as you add more and more
special notification code,
duplication and code bloat take
over.

A few runtime object notifications
can be easily handled with
simple custom code. But when
the number of notifications
increases, lots of special code
will be written or more and more
subclasses will be produced to
obtain the necessary behavior.
At that point, your code can be
simplified by using the Observer
pattern.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 52 of 87

Mechanics

1. Identify a Subject: a class that accepts an object reference and contains hard-coded
notification instructions that couple it directly to the object reference type.

2. Define an Observer: an interface that consists of the set of public methods called by the

Subject on the referenced object.

3. Add to the Subject an Observers list and a way for clients to add to that list via a public
addObserver(Observer o) method. Add a corresponding removeObserver(Observer o)
method only if one is needed.

4. For code in the Subject that accepted an object reference and directly notified that

reference, replace with code that iterates over Subject’s Observer list, updating each
Observer instance.

5. For any class that needs to get notified by Subject, make it implement the Observer

interface.

6. Replace code that passed in an object reference to the Subject with code that registers that
object reference as an Observer of the Subject. You’ll use Subject’s
addObserver(Observer o) method for this purpose.

7. Compile and test.

Example

The code sketch above is from Kent Beck and Erich Gamma’s JUnit Testing Framework. Prior to
JUnit 3.x, the authors defined specific TestResult subclasses (like UITestResult, SwingTestResult
and TextTestResult) that were responsible for gathering up test information and reporting it to
TestRunners. Each TestResult subclass was coupled to a specific TestRunner, such as an AWT
TestRunner, Swing TestRunner or Text-based TestRunner. At runtime, after creating a
TestResult subclass, a TestRunner would pass itself in as a reference to that TestResult, and then
wait to be notified by the TestResult. Each TestResult subclass was hard-coded this way to talk
with a specific TestRunner, and that is where our refactoring begins.

In JUnit 3.1, Kent and Erich refactored the TestResult/TestRunner code to use the Observer
pattern. This enabled them to eliminate all of the special TestResult subclasses (UITestResult,
SwingTestResult and TextTestResult) and simplify each of the concrete TestRunners.

Our example will look at this real-world refactoring of the JUnit framework. I’ve deliberately
simplified some of the JUnit code in order to concentrate on the refactoring, not the inner
workings of JUnit. However, if you want to study the JUnit code (which I highly recommend),
you can download it at http://www.junit.org.

1. Our first task is to find a Subject. In this case, the UITestResult class will be our Subject, but
later our Subject will become the TestResult class. What is the reason for this? Well, as a
subclass of TestResult, UITestResult doesn’t add much new behavior: it exists only because it has
the ability to talk directly to an AWT TestRunner class. Our refactoring will seek to eliminate
UITestResult and move its behavior up to the TestResult class.

Let’s look at the code for all three classes, minus some details you don’t need to worry about.
I highlight in bold the coupling between UITestResult and its AWT TestRunner:

package junit.framework;
public class TestResult extends Object {

protected Vector fFailures;

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 53 of 87

public TestResult() {
fFailures= new Vector(10);

}
public synchronized void addFailure(Test test, Throwable t) {

fFailures.addElement(new TestFailure(test, t));
}
public synchronized Enumeration failures() {

return fFailures.elements();
}
protected void run(TestCase test) {

startTest(test);
try {

test.runBare();
}
catch (AssertionFailedError e) {

addFailure(test, e);
}
endTest(test);

}
}

package junit.ui;
class UITestResult extends TestResult {

private TestRunner fRunner;
UITestResult(TestRunner runner) {

fRunner= runner;
}
public synchronized void addFailure(Test test, Throwable t) {

super.addFailure(test, t);
fRunner.addFailure(this, test, t);

}
...

}

package junit.ui;
public class TestRunner extends Frame {

private TestResult fTestResult;
...
protected TestResult createTestResult(TestRunner runner) {

return new UITestResult(TestRunner.this);
}
synchronized public void runSuite() {

...
fTestResult = createTestResult(TestRunner.this);
testSuite.run(fTestResult);

}
public void addFailure(TestResult result, Test test, Throwable t) {

fNumberOfFailures.setText(Integer.toString(result.testFailures()));
appendFailure("Failure", test, t);

}
}

2. Our next task is to define an Observer interface. Kent and Erich call this a TestListener:

package junit.framework;
public interface TestListener {

public void addError(Test test, Throwable t);
public void addFailure(Test test, Throwable t);
public void endTest(Test test);
public void startTest(Test test);

}

3. We must now add a list of Observers to our Subject and provide clients (that implement the
Observer interface) a way to add themselves to this list. We do this work on the TestResult class
rather than the UITestResult class, which we hope to eliminate:

public class TestResult extends Object {
protected Vector fFailures;
protected Vector fListeners;
public TestResult() {

fFailures= new Vector();
fListeners= new Vector();

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 54 of 87

public synchronized void addListener(TestListener listener) {
fListeners.addElement(listener);

}
}

4. Now we need to make our Subject update its Observers when an event happens. This involves
refactoring TestResult methods like addFailure(), addError() and so on. For simplicity, we will
examine only how addFailure() is refactored. Here’s what the original method looked like on
UITestResult:

class UITestResult. . .

public synchronized void addFailure(Test test, Throwable t) {
super.addFailure(test, t);
fRunner.addFailure(this, test, t);

}

Rather than refactor UITestResult’s addFailure() method, we focus on the same method in
TestResult, the superclass. TestResult’s addFailure method will continue to do what it used to do,
but it will now iterate through its registered Observers, calling each one’s addFailure() method. In
this context, since Observers are usually TestRunners, this code will inform each registered
TestRunner that a failure has been added. When that happens, the TestRunners have a chance to
do things like update a GUI to reflect just how many test failures have occurred. Here’s what
TestResult’s refactored addFailure() method looks like:

class TestResult. . .

public synchronized void addFailure(Test test, AssertionFailedError t) {
fFailures.addElement(new TestFailure(test, t));
for (Enumeration e= cloneListeners().elements(); e.hasMoreElements();) {

((TestListener)e.nextElement()).addFailure(test, t);
}

}

5. Now, in order for the AWT TestRunner to register itself as an Observer of a TestResult, we
must make the ui.TestRunner class implement the TestListener interface:

package junit.ui;
public class TestRunner extends Object implements TestListener . . .

6. The final step is to register the Observer with the Subject of choice. In this case, we’ll look at
the code that registers the ui.TestRunner with a TestResult instance:

package junit.ui;
public class TestRunner extends Object implements TestListener {

private Vector fFailedTests;
private TestResult fTestResult;

protected TestResult createTestResult() {
return new TestResult();

}
synchronized public void runSuite() {

. . .
fTestResult = createTestResult();
fTestResult.addListener(TestRunner.this);
. . .

}
}

7. Finally, we can now compile and test that our refactored ui.TestRunner and TestResult work
together the way we expect. In the real world, Kent and Erich refactored all of the TestResult
subclasses and TestRunners to use the Observer pattern.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 55 of 87

Move Accumulation to Collecting Parameter*

You have a single bulky method
that accumulates information to a variable

Accumulate your result to a Collecting Parameter

that you pass to extracted methods.

class TagNode. . .
public String toString() {
 String result = new String();
 result += "<" + tagName + " " + attributes + ">";
 Iterator it = children.iterator();
 while (it.hasNext()) {
 TagNode node = (TagNode)it.next();
 result += node.toString();
 }
 if (!tagValue.equals(""))
 result += tagValue;
 result += "</" + tagName + ">";
 return result;
 }

class TagNode. . .
public String toString() {
 return toStringHelper(new StringBuffer(""));
}
private String toStringHelper(StringBuffer result) {
 writeOpenTagTo(result);
 writeChildrenTo(result);
 writeEndTagTo(result);
 return result.toString();
}

!

Motivation

Kent Beck defined the Collecting Parameter pattern in his classic book, Smalltalk Best
Practice Patterns. A Collecting Parameter is an object that you pass to methods in order to collect
information from those methods. A good reason to use this pattern is when you want to
decompose a bulky method into smaller methods (using Extract Method [Fowler]), and you need
to accumulate information from each of the extracted methods. Instead of making each of the
extracted methods return a result, which you later combine into a final result, you can
incrementally accumulate your result by passing a collecting parameter to each of the extract
methods, which in turn, write their results to the collecting parameter.

Collecting Parameter works nicely with the Composite pattern, since you can use a Collecting
Parameter to recursively accumulate information from a Composite structure. Kent Beck and
Erich Gamma combined these two patterns in their JUnit testing framework to enable a single
TestResult object to gather test result information from every test in a hierarchical structure of
test case objects.

I recently combined Collecting Parameter with Composite when I refactored a class’s
toString() method (see the code sketch above). My initial goal was to replace a lot of slow
String concatenation code with faster StringBuffer code, but when I realized that a simple
replacement would generate lots of StringBuffer instances (because the code is recursive), I
retreated from this approach. Then my programming partner at the time, Don Roberts, seized the
keyboard, saying “I’ve got it, I’ve got it” and then quickly refactored the code to use a single

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 56 of 87

StringBuffer as a Collecting Parameter. The resulting code (partially shown in the code
sketch) had a far simpler design, communicated better with the reader and, thanks to the
StringBuffer, was far more efficient.

Communication Duplication Simplicity
Bulky methods don’t
communicate well. Communicate
what you are accumulating by
placing each step into intention-
revealing methods that write
results to a parameter.

You don’t often reduce duplicate
code using this refactoring. The
only exception would be if you
have different types of Collecting
Parameters that can be passed
into the same methods.

Extract Method is at the heart of
this refactoring. You use it to
reduce a bulky method into a
simpler method that delegates to
intention-revealing methods.

Mechanics

1. Identify a chunk of code that accumulates information into a variable (we’ll call that

variable “result”). Result will become your Collecting Parameter. If result’s type won’t
let you iteratively gather data across methods, change result’s type. For example, Java’s
String won’t let us accumulate results across methods, so we use a StringBuffer.

2. Find an information accumulation step and extract it into a private method (using Extract

Method [Fowler]). Make the method’s return type be void and pass it result. Inside the
method, write information to result.

3. Repeat steps 2 for every accumulation step, until the original code has been replaced with

calls to extracted methods that accept and write to result.

4. Compile and test.

 Example

In this example, we will see how to refactor Composite-based code to use a Collecting
Parameter. We’ll start with a composite that can model an XML tree (see Replace Primitive Tree
Construction with Composite for a complete example of this XML composite code).

The composite is modeled with a single class, called TagNode, which has a toString()
method. The toString() method recursively walks the nodes in the XML tree, and produces a
final String representation of what it finds. It does a fair amount of work in 11 lines of code. We
will refactor toString() to make it simpler and easier to understand.

1. The following toString() method recursively accumulates information from every tag in a
composite structure and stores results in a variable called “result”:

class TagNode. . .
public String toString() {

String result = new String();
result += "<" + tagName + " " + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagValue.equals(""))

result += tagValue;
result += "</" + tagName + ">";
return result;

}

I change result’s type to be a StringBuffer in order to support this refactoring:

StringBuffer result = new StringBuffer("");

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 57 of 87

2. I identify the first information accumulation step: code that concatenates an xml open tag along
with any attributes to the result variable. I Extract Method on this code as follows:

result += "<" + tagName + " " + attributes + ">";

is extracted to:

private void writeOpenTagTo(StringBuffer result) {
result.append("<");
result.append(name);
result.append(attributes.toString());
result.append(">");

}

The original code now looks like this:

StringBuffer result = new StringBuffer("");
writeOpenTagTo(result);

 …

3. Next, I want to continue to extract methods from toString(). I focus on the code that adds
child XML nodes to the result. This code contains a recursive step (which I highlight below in
bold):

class TagNode. . .

public String toString(). . .
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagValue.equals(""))

result += tagValue;
. . .

}

Since this code makes a recursive call, it isn’t so easy to extract into a method. The following
code will show you why:

private void writeChildrenTo(StringBuffer result) {

Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
node.toString(result); // can’t do this because toString() doesn’t take arguments.

}
. . .

}

Since toString() doesn’t take a StringBuffer as an argument I can’t simply extract the method. I
have to find another solution and I decide to solve the problem using a helper method. This
method will do the work that toString() used to do, but it will take a StringBuffer as a Collecting
Parameter:

public String toString() {

return toStringHelper(new StringBuffer(""));
}

private String toStringHelper(StringBuffer result) {
writeOpenTagTo(result);
. . .
return result.toString();

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 58 of 87

With the new toStringHelper() method in place, I can go back to my original task: extracting the
next accumulation step:

private String toStringHelper(StringBuffer result) {

writeOpenTagTo(result);
writeChildrenTo(result);
…
return result.toString();

}
private void writeChildrenTo(StringBuffer result) {

Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
node.toStringHelper(result); // now recursive call will work

}
if (!value.equals(""))

result.append(value);
}

As I stare at the writeChildrenTo() method, I realize that it is handling two steps: adding
children recursively and adding a value to a tag, when one exists. To make these two separate
steps stand out, I extract the code for handling a value into its own method:

private void writeValueTo(StringBuffer result) {

if (!value.equals(""))
result.append(value);

}

To finish the refactoring, I extract one more method that writes an XML close tag. Here’s what
the final code looks like:

public class TagNode . . .

public String toString() {
return toStringHelper(new StringBuffer(""));

}
private String toStringHelper(StringBuffer result) {

writeOpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
writeEndTagTo(result);
return result.toString();

}
private void writeOpenTagTo(StringBuffer result) {

result.append("<");
result.append(name);
result.append(attributes.toString());
result.append(">");

}
private void writeChildrenTo(StringBuffer result) {

Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
node.toStringHelper(result);

}
}
private void writeValueTo(StringBuffer result) {

if (!value.equals(""))
result.append(value);

}
private void writeEndTagTo(StringBuffer result) {

result.append("</");
result.append(name);
result.append(">");

}
}

Or so I thought that was the final code. An astute reader of the above code pointed out that when
the writeChildrenTo() method recursively calls toStringHelper(), it is returned a String,
which it promptly ignores. In other words, the only time that the return result of

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 59 of 87

toStringHelper() is used is when it is called from the toString() method. This means that
the code can be made more efficient as follows:

public String toString() {

StringBuffer result = new StringBuffer("");
toStringHelper(result);
return result.toString();

}
public void toStringHelper(StringBuffer result) {

writeOpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
writeEndTagTo(result);

}

4. I compile, run my tests and everything is good.

Example 2

To get a better understanding of the Collecting Parameter pattern, let’s have a look at another
example, which comes from the unit testing framework, JUnit. In JUnit, every test is an object.
Test objects get put into suites, which may be put into more suites, which results in a composite
of tests. To report on how each test performs (did it pass, fail or generate errors?), some object
needs to accumulate and report results as each test in the Composite is executed. TestResult is
that object and it serves the role of Collecting Parameter.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 60 of 87

Replace One/Many Distinctions with Composite

You have separate code for handling
single elements and collections of those elements

Combine the code to handle single

or multiple elements using Composite

public class Product...
 protected Vector singleParts = new Vector();
 protected Vector collectedParts = new Vector();

 public void add(Part part) {
 singleParts.addElement(part);
 }
 public void add(PartSet set) {
 collectedParts.addElement(set);
 }
 public float getPrice() {
 float price = 0.0f;
 Enumeration e;
 for (e=singleParts.elements(); e.hasMoreElements();) {
 Part p = (Part)e.nextElement();
 price += p.getPrice();
 }
 for (e=collectedParts.elements(); e.hasMoreElements();) {
 PartSet set = (PartSet)e.nextElement();
 price += set.getPrice();
 }
 return price;
 }

public class Product...
 protected Vector parts = new Vector();

 public void add(Part p) {
 parts.addElement(p);
 }
 public float getPrice() {
 float price = 0.0f;
 for (Enumeration e=parts.elements(); e.hasMoreElements();) {
 Part p = (Part)e.nextElement();
 price += p.getPrice();
 }
 return price;
 }

!

Motivation

A good reason to refactor to Composite is to get rid of code that distinguishes between single
objects and collections of those objects. You may find code that makes these distinctions when
you have a hierarchy of objects, some of which are leaves and some of which are collections of
leaves (or collections of collections). Treating both the leaf objects and the collections identically
is an important goal of Composite.

[I have much more to write in this section]
.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 61 of 87

Communication Duplication Simplicity

If you’re performing the same
behavior on single objects or
collections of those objects, it is
useful to communicate this in
your code. But code that
handles the different class types
in separate bits of code doesn’t
communicate this message well.
Make it clear by using the
Composite pattern to treat your
single and multiple objects
uniformly.

One of the primary reasons to
refactor to Composite is to
remove duplication. Identify
separate chunks of code that
execute similar behavior on
different class types and
consolidate this code by treating
the objects uniformly via an
interface or common base class.

Having separate code to process
single objects and collections of
objects isn’t simple – it is a
symptom of code that is
needlessly complex. Simplify
this code by treating the class
types uniformly via an interface
or common base class.

Mechanics

[to do]

10 rules in validation
plus 5
only use 8 plus 2 more originals

Example

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 62 of 87

Compose Method**

It isn’t easy to understand your method’s logic

Transform the logic into a small number of
intention-revealing steps at the same level of detail

public boolean contains(Component c) {
 Point p = c.getLocation();
 int locX = new Double(p.getX()).intValue();
 int locY = new Double(p.getY()).intValue();
 boolean completelyWithin =

(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

 if (completelyWithin) return true;

 locX = locX+CardComponent.WIDTH;
 locY = locY+CardComponent.HEIGHT;
 boolean partiallyWithin =

(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

 return partiallyWithin;
}

public boolean contains(Component c) {
 return completelyWithin(c) || partiallyWithin(c) ;
}

private boolean completelyWithin(Component c) {
 Point p = c.getLocation();
 return (p.x >= coords[0] &&
 p.y >= coords[1] &&
 (p.x + CardComponent.WIDTH) <= coords[2] &&
 (p.y + CardComponent.HEIGHT) <= coords[3]);
}

private boolean partiallyWithin(Component c) {
 Point p = c.getLocation();
 return ((p.x + CardComponent.WIDTH) > coords[0] &&
 (p.y + CardComponent.HEIGHT) > coords[1] &&
 (p.x + CardComponent.WIDTH) < coords[2] &&
 (p.y + CardComponent.HEIGHT) < coords[3]);
}

!

Motivation

Kent Beck once said that some of his best patterns are those that he thought someone would
laugh at him for writing. Composed Method [Beck] may be such a pattern. A Composed Method
is a small, simple method that is easy to understand. Do you write a lot of Composed Methods? I
like to think I do, but I often find that I don’t, at first. So I have to go back and refactor to this
pattern. When my code has many Composed Methods, it tends to be a easy to use, read and
extend.

This refactoring has two asterisks beside its name because I find myself aggressively
refactoring to it often. For example, just the other day I was debugging a method in some code
I’m writing. The method, called contains(), wasn’t very complex, but it was complex enough

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 63 of 87

that I had to think about how it was doing its job. I knew this method would be easier to debug if
I refactored it first. But my ego wasn’t ready for that, just then: I just wanted to get rid of the
bug. So, after writing an automated test to demonstrate the bug, I wrote new code in the
contains() method to fix the bug. That code didn’t fix the bug and after two more failed
attempts, I was ready to refactor. It wasn’t difficult to transform contains() into a Composed
Method. But after doing so, it was so much easier to follow the logic. And moments after the
refactoring, I found and fixed my bug.

Communication Duplication Simplicity
It may be clear what a method
does but not how the method
does what it does. Make the
“how” easy to understand by
clearly communicating every
logical step. You’ll often
implement part of this refactoring
using Extract Method [Fowler].

Duplicate code, whether blatant
or subtle, clutters a method’s
logic. Remove the duplication to
make the code smaller and
simpler. Doing so often reveals
further refactoring opportunities.

Composed Methods often read
like English. If your method has
too many lines of code, such that
you can’t easily explain how it
does its job, simplify it by
extracting logic till it is a
Composed Method.

Mechanics

This is one of the most important refactorings I know of. Conceptually, it is also one of the

simplest. So you’d think that this refactoring would lead to a simple set of mechanics. In fact,
just the opposite is the case. While the steps themselves aren’t complex, there is no simple,
repeatable set of these steps. But there are guidelines for refactoring to Composed Method, some
of which include:

• Think Small – Composed Methods are rarely more than 10 lines of code, and are usually
more like 5.

• Remove Duplication – Reduce the amount of code in the method by getting rid of blatant

and/or subtle code duplication.

• Communicate Intention – do so with the names of your variables and methods, and by
making your code simple.

• Simplify – there are many ways to skin a cat. Refactor to the way that is most simple and

that best communicates your intention. Simple methods may not be the most highly
optimized methods. Don’t worry about that. Make your code simple and optimize it
later.

• Similar Levels – when you break up one method into chunks of behavior, make the
chunks operate at similar levels. For example, if you have a piece of detailed conditional
logic mixed in with some high-level method calls, you have code at different levels.
Push the detail into a new or existing high-level chunk.

• Group Related Code – Some code is simply hard to extract into its own method. You can

easily see a way to extract part of the code, but the rest remains in the original method.
You now have code at different levels. In addition, because you have an unnatural split
between related fragments of code, your code is harder to follow. In general, look for
ways to group related code fragments, even if they aren’t obvious at first.

 Let’s now look at three examples of refactoring to Composed Method:

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 64 of 87

Example 1

I’ll start with the game example from the code sketch above. We begin with a single bulky
method, called contains(), which figures out whether a Component is fully or partially
contained within a rectangular area:

public boolean contains(Component c) {
Point p = c.getLocation();
int locX = new Double(p.getX()).intValue();
int locY = new Double(p.getY()).intValue();
boolean completelyWithin =
(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

if (completelyWithin) return true;

locX = locX+CardComponent.WIDTH;
locY = locY+CardComponent.HEIGHT;
boolean partiallyWithin =
(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

return partiallyWithin;
}

Before we get into the refactoring, let’s look at one of six test methods for the contains()

method. The following method tests to see if a card is initially contained within the first player’s
play area, then moves the card out of the first player’s play area and follows that with another
test:

public void testCardOutOfPlayAreaOne() {
Hand hand = (Hand)explanations.getCurrentPlayer().getHand();
Card card = (Card)hand.elements().nextElement();
CardComponent c = new CardComponent(card,explanations);
PlayerArea area = explanations.getPlayerArea(0);
explanations.moveCard(c, area.upperLeft());
assertEquals("area contains card", true, area.contains(c));

explanations.moveCard(c, CardComponent.WIDTH + 10, CardComponent.HEIGHT + 10);
assertEquals("area does not contain card", false, area.contains(c));

}

The above test, and the other five tests, all pass (or “run green’) before I begin refactoring. I

run these tests after each of the small steps I am about to do below.
To begin, my first impulse is to make the contains() method smaller. That leads me to

look at the conditional represented by the variable, completelyWithin:

boolean completelyWithin =
(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

While that variable helps make it clear what the conditional logic does, the contains()
method would be smaller and easier to read if this fragment were in it’s own method. So I start
with an Extract Method:

public boolean contains(Component c) {

Point p = c.getLocation();
int locX = new Double(p.getX()).intValue();
int locY = new Double(p.getY()).intValue();
if (completelyWithin(locX, locY)) return true;

locX = locX+CardComponent.WIDTH;

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 65 of 87

locY = locY+CardComponent.HEIGHT;
boolean partiallyWithin =

(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

return partiallyWithin;
}

private boolean completelyWithin(int locX, int locY) {
return (locX >= coords[0] &&

locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

}

Next, after seeing a similar temporary variable, called partiallyWithin, I do another Extract
Method:

public boolean contains(Component c) {

Point p = c.getLocation();
int locX = new Double(p.getX()).intValue();
int locY = new Double(p.getY()).intValue();
if (completelyWithin(locX, locY)) return true;
locX = locX+CardComponent.WIDTH;
locY = locY+CardComponent.HEIGHT;
return partiallyWithin(locX, locY);

}

private boolean partiallyWithin(int locX, int locY) {
return (locX > coords[0] &&

locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

}

The contains() method is now smaller and simpler, but it still seems cluttered with

variable assignments. I notice that the assignments to locX and locY are performed simply for
use by the new methods, completelyWithin() and partiallyWithin(). I decide to
let those methods deal with the locX and locY assignments. The easiest way to do this is to
just pass the Point variable, p, to each of the methods:

public boolean contains(Component c) {

Point p = c.getLocation();
if (completelyWithin(p)) return true;
return partiallyWithin(p);

}

Now, the contains() method is really looking smaller and simpler. I feel like I’m done.

But then I look at that first line of code:

Point p = c.getLocation();

 The level of that code seems wrong – it is a detail, while the rest of the code in the method
represents core pieces of logic. The two methods I’m calling each need the Point variable. But
each of those methods could easily obtain the Point variable if I just sent them Component c. I
consider doing that, but then I worry about violating the rule of doing things once and only once.
For if I pass variable c, the Component, to each method, each method will have to contain code
to obtain a Point from c, instead of just getting one passed in directly.

Hmmmm. What is my real goal here? Is it more important to get the levels of the code right
or to say things once and only once? After some reflection, I realize that my goal is to produce a
method that can be read and understood in seconds. But as it stands, that first line of code takes
away from the readability and simplicity of the method. So I push down the code to obtain a
Point into the two called methods and end up with the following:

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 66 of 87

public boolean contains(Component c) {
return completelyWithin(c) || partiallyWithin(c);

}

private boolean completelyWithin(Component c) {
Point p = c.getLocation();
int locX = new Double(p.x).intValue();
int locY = new Double(p.y).intValue();
return (locX >= coords[0] &&

locY >= coords[1] &&
(locX + CardComponent.WIDTH) <= coords[2]) &&
(locY + CardComponent.HEIGHT) <= coords[3];

}

private boolean partiallyWithin(Component c) {
Point p = c.getLocation();
int locX = new Double(p.x).intValue() + CardComponent.WIDTH;
int locY = new Double(p.y).intValue() + CardComponent.HEIGHT;
return (locX > coords[0] &&

locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

}

Now I think I’m really done. But whenever you think you’re really done, you’re not. A reviewer
of this refactoring, named Andrew Swan, observed that I was converting p.x and p.y to ints,
when they are already ints! So this lead to a further simplification:

public boolean contains(Component c) {

return completelyWithin(c) || partiallyWithin(c) ;
}

private boolean completelyWithin(Component c) {
Point p = c.getLocation();
return (p.x >= coords[0] &&

p.y >= coords[1] &&
(p.x + CardComponent.WIDTH) <= coords[2] &&
(p.y + CardComponent.HEIGHT) <= coords[3]);

}

private boolean partiallyWithin(Component c) {
Point p = c.getLocation();
return ((p.x + CardComponent.WIDTH) > coords[0] &&

(p.y + CardComponent.HEIGHT) > coords[1] &&
(p.x + CardComponent.WIDTH) < coords[2] &&
(p.y + CardComponent.HEIGHT) < coords[3]);

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 67 of 87

Example 2

public static Vector wrap(String s) {
 Vector wrapVector = new Vector();
 String words;
 String word;
 int lastPos;
 do {
 if (s.length() > 16) {
 words="";
 word="";
 lastPos=0;
 for (int i=0;i<16;i++) {
 if (s.charAt(i)==' ' || s.charAt(i)=='-') {
 words+=word+s.charAt(i);
 lastPos = i+1;
 word="";
 } else word+=s.charAt(i);
 }
 if (lastPos==0) {
 // Rare case that there was no space or dash, insert one and break
 words+=word+"-";
 lastPos=16;
 }
 wrapVector.addElement(words);
 s = s.substring(lastPos, s.length());
 }
 } while (s.length() > 16);
 if (s.length()>0) wrapVector.addElement(s);
 return wrapVector;
}

public static Vector wrap(StringBuffer cardText) {
 Vector wrapLines = new Vector();
 while (cardText.length() > 0)
 wrapLines.addElement(extractPhraseFrom(cardText));
 return wrapLines;
}

private static String extractPhraseFrom(StringBuffer cardText) {
 StringBuffer phrase = new StringBuffer("");
 StringBuffer word = new StringBuffer("");
 final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
 for (int i=0; i<MAXCHARS; i++) {
 addCharacterTo(word, cardText.charAt(i));
 if (isCompleteWord(word, cardText))
 addCompleteWordTo(phrase, word);
 }
 addRemainingWordTo(phrase, word);
 removePhraseFrom(cardText, phrase);
 return phrase.toString();
}

private static boolean addCharacterTo(StringBuffer word, char character) ...
private static boolean isCompleteWord(StringBuffer word, StringBuffer cardText) ...
private static void addCompleteWordTo(StringBuffer phrase, StringBuffer word) ...
private static void addRemainingWordTo(StringBuffer phrase, StringBuffer word) ...
private static void removePhraseFrom(StringBuffer cardText, StringBuffer phrase)...

!

In a game I’ve been writing with a friend, text needs to be displayed on graphical cards. The
text is typically too long to fit on one line of each card, so it must be displayed on multiple lines
of each card. To enable this behavior, we test-first programmed a wrap() method. Here are a few
of the tests:

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 68 of 87

public void accumulateResult(String testString) {
int i = 0;
for (Enumeration e = CardComponent.wrap(testString).elements();e.hasMoreElements();)

result[i++] = (String)e.nextElement();
}

public void testWrap() {
accumulateResult("Developers Misunderstand Requirements");
assertEquals("First line","Developers ",result[0]);
assertEquals("Second line","Misunderstand ",result[1]);
assertEquals("Third line","Requirements",result[2]);

}
public void testWrap2() {

accumulateResult("Stories Are Too Complex");
assertEquals("First line","Stories Are Too ",result[0]);
assertEquals("Second line","Complex",result[1]);

}
public void testWrap3() {

accumulateResult("Intention-Revealing Code");
assertEquals("First line","Intention-",result[0]);
assertEquals("Second line","Revealing Code",result[1]);

}

With these tests in place, I can work on refactoring the following bloated method:

public static Vector wrap(String s) {

Vector wrapVector = new Vector();
String words;
String word;
int lastPos;
do {

if (s.length() > 16) {
words="";
word="";
lastPos=0;
for (int i=0;i<16;i++) {

if (s.charAt(i)==' ' || s.charAt(i)=='-') {
words+=word+s.charAt(i);
lastPos = i+1;
word="";

} else word+=s.charAt(i);
}
if (lastPos==0) {

// Rare case that there was no space or dash, insert one and break
words+=word+"-";
lastPos=16;

}
wrapVector.addElement(words);
s = s.substring(lastPos, s.length());

}
} while (s.length() > 16);
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

The first thing I notice is that we have some blatant duplicate logic: the line, s.length() > 16,
appears in a conditional statement at line 6 and at the end of the while statement. No good. I
experiment with removing this duplication by using a while loop instead of a do..while loop.
The tests confirm that the experiment works:

public static Vector wrap(String s) {
Vector wrapVector = new Vector();
String words;
String word;
int lastPos;
while (s.length() > 16) {

words="";
word="";
lastPos=0;
for (int i=0;i<16;i++)

if (s.charAt(i)==' ' || s.charAt(i)=='-') {
words+=word+s.charAt(i);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 69 of 87

lastPos = i+1;
word="";

} else word+=s.charAt(i);
if (lastPos==0) {

// Rare case that there was no space or dash, insert one and break
words+=word+"-";
lastPos=16;

}
wrapVector.addElement(words);
s = s.substring(lastPos, s.length());

}
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

Next I notice more duplication. At two places in the middle of the method, the code says:

word+=s.charAt(i).

By consolidating this logic, I see a way to simplify a conditional statement:

for (int i=0;i<16;i++) {

word+=s.charAt(i); // now we say this only once
if (s.charAt(i)==' ' || s.charAt(i)=='-') {

words+=word;
lastPos = i+1;
word="";

} // else statement is no longer needed

}

Additional duplicate logic doesn’t jump out at me just yet, so I continue to look (I know it is
there!). I wonder about the variable, lastPos. What does it store? Can I figure out what the
value of lastPos would be, without having to declare and set a variable for it? After a little bit
of study, I try some experiments. Gradually it dawns on me that words.length() contains the
exact value as that held by lastPos. This allows me to get rid of another variable, and all of the
assignments to it:

public static Vector wrap(String s) {

Vector wrapVector = new Vector();
String words;
String word;
while (s.length() > 16) {

words="";
word="";
for (int i=0;i<16;i++) {

word+=s.charAt(i);
if (s.charAt(i)==' ' || s.charAt(i)=='-') {

words+=word;
word="";

}
}
if (words.length() == 0) // if no space or dash, insert one

words+=word+"-";
wrapVector.addElement(words);
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

The code is definitely getting smaller and more manageable. But the body of the while
method still seems big and bulky. I decide to Extract Method [Fowler]:

public static Vector wrap(String s) {

Vector wrapVector = new Vector();
String words;
while (s.length() > 16) {

words = extractPhraseFrom(s);

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 70 of 87

wrapVector.addElement(words);
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

private static String extractPhraseFrom(String cardText) {
String phrase = "";
String word="";
for (int i=0;i<16;i++) {

word += cardText.charAt(i);
if (cardText.charAt(i)==' ' || cardText.charAt(i)=='-') {

phrase += word;
word="";

}
}
if (phrase.length() == 0) // no found space or dash, insert dash

phrase+=word+"-";
return phrase;

}

We’re making progress. But I’m still not happy with the wrap() method: I don’t like the fact

that the code is adding elements to the wrapVector both inside and outside the while loop and I
also don’t like the mysterious line that changes the value of the String “s” (which is a bad name
for a variable that holds on to a card’s text):

s = s.substring(words.length(), s.length());

So I ask myself how I can make this logic clearer? Given some card text, I would like my

code to show how the text is broken up into pieces, added to a collection and returned. I decide
that the best way to achieve this objective is to push all code that is responsible for creating a
“phrase” into the extractPhraseFrom() method. I hope to end up with a while loop that has
one line of code.

My first step is to rename and change the type of the String variable, s. I call it cardText
and change it to be StringBuffer, since it will be altered by the extractPhraseFrom()
method. This change requires that I make all callers of wrap() pass in a StringBuffer instead of
a String. As I go about doing this work, I see that I can also get rid of the temporary variable,
word, leaving the following:

public static Vector wrap(StringBuffer cardText) {

Vector wrapVector = new Vector();
while (cardText.length() > 16) {

wrapVector.addElement(extractPhraseFrom(cardText));
cardText.delete(0, words.length());

}
if (cardText.length()>0) wrapVector.addElement(cardText.toString());
return wrapVector;

}

Now I must figure out how to push the fragmented pieces of phrase-construction logic down

into the extractPhraseFrom() method. My tests give me a lot of confidence as I go about
this work. First, I go for the low-hanging fruit: the code that deletes a substring from cardText
can easily be moved to extractPhraseFrom(), which yields the following:

public static Vector wrap(StringBuffer cardText) {

Vector wrapVector = new Vector();
while (cardText.length() > 16)

wrapVector.addElement(extractPhraseFrom(cardText));
if (cardText.length()>0) wrapVector.addElement(cardText.toString());
return wrapVector;

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 71 of 87

Now, I’ve just got the line of code after the while loop to worry about:

if (cardText.length()>0) wrapVector.addElement(cardText.toString());

How can I get that code to live in the extractPhraseFrom() method? I study the while

loop and see that I’m looping on a magic number, 16. First, I decide to make a constant for that
number, called MAX_LINE_WIDTH. Then, as I continue to study the loop, I wonder why the
wrap() method has two conditionals fragments that check cardText.length(), (one in the
while loop and one after the while loop). I want to remove that duplication. I decide to change
the while loop to do its thing while cardText.length() > 0.

This last change requires a few changes to the extractPhraseFrom method to make it
capable of handling the case when a line of text isn’t greater than 16 characters (now called
MAX_LINE_WIDTH). Once the tests confirm that everything is working, wrap() now feels like a
Composed Method, while extractPhraseFrom() is getting there. Here’s what we have
now:

public static Vector wrap(StringBuffer cardText) {
Vector wrapLines = new Vector();
while (cardText.length() > 0)

wrapLines.addElement(extractPhraseFrom(cardText));
return wrapLines;

}

private static String extractPhraseFrom(StringBuffer cardText) {
String phrase = "";
String word="";
final int MAX_CHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAX_CHARS; i++) {

word += cardText.charAt(i);
if (cardText.charAt(i)==' ' || cardText.charAt(i)=='-' ||

cardText.toString().endsWith(word)) {
phrase += word;
word="";

}
}
if (phrase.length() == 0)

phrase=word+"-";
cardText.delete(0, phrase.length());
return phrase;

}

This code is simpler than the original, so we could stop here. But I’m not altogether happy with
the extractPhraseFrom() method. It’s not a Composed Method, so I’m drawn to continue
refactoring it. What’s wrong with it? Well, there’s a lot of conditional logic in it, and that
conditional logic doesn’t communicate very well. For example, what does this mean:

if (cardText.charAt(i)==' ' || cardText.charAt(i)=='-' ||

cardText.toString().endsWith(word)) {
phrase += word;
word="";

}

Since my pair and I wrote that code, I know that it means, “if we’ve found a complete word, then
add the word to the phrase, and blank out the word variable so we can find the next word.” But
the next reader will have to figure that out. So I’ll make the intention clear, by using Extract
Method (which also requires changing some variables from Strings to StringBuffers):

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

word.append(cardText.charAt(i));
if (isCompleteWord(word, cardText)) // note how more intention-realing this is

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 72 of 87

addCompleteWordTo(phrase, word); // same for this line
}
if (phrase.length() == 0)

phrase.append(word + "-");
cardText.delete(0, phrase.length());
return phrase.toString();

}

private static boolean isCompleteWord(StringBuffer word, StringBuffer cardText) {
return (word.charAt(word.length()-1) ==' ' || word.charAt(word.length()-1) =='-' ||

cardText.toString().endsWith(word.toString()));
}

private static void addCompleteWordTo(StringBuffer phrase, StringBuffer word) {
phrase.append(word);
word.delete(0, word.length());

}

We’re getting closer. But I still don’t like the cryptic conditional statement that comes after the
for loop. So I apply Extract Method to it:

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

word.append(cardText.charAt(i));
if (isCompleteWord(word, cardText))

addCompleteWordTo(phrase, word);
}
addRemainingWordTo(phrase, word); // now this code communicates intention
cardText.delete(0, phrase.length());
return phrase.toString();

}

private static void addRemainingWordTo(StringBuffer phrase, StringBuffer word) {
if (phrase.length() == 0)

phrase.append(word + "-");
}

The extractPhraseFrom() method is now 10 lines of code and reads a lot more like English.
But it is still uneven! Consider these two lines of code:

word.append(cardText.charAt(i));

cardText.delete(0, phrase.length());

Both of these lines aren’t complicated, but compared with the other code, which reads like
English, these bits of code stick out, demanding that the reader concentrates to understand them.
So I push myself to extract these 2 lines of code into 2 intention-revealing methods:
addCharacterTo() and removePhraseFrom(). This yields a Composed Method:

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

addCharacterTo(word, cardText.charAt(i));
if (isCompleteWord(word, cardText))

addCompleteWordTo(phrase, word);
}
addRemainingWordTo(phrase, word);
removePhraseFrom(cardText, phrase);
return phrase.toString();

}

My tests run green and I’m satisfied.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 73 of 87

Example 3

private void paintCard(Graphics g) {
 Image image = null;
 if (card.getType().equals("Problem")) {
 image = explanations.getGameUI().problem;
 } else if (card.getType().equals("Solution")) {
 image = explanations.getGameUI().solution;
 } else if (card.getType().equals("Value")) {
 image = explanations.getGameUI().value;
 }
 g.drawImage(image,0,0,explanations.getGameUI());

 if (highlight)
 paintCardHighlight(g);
 paintCardText(g);
}

private void paintCard(Graphics g) {
 paintCardImage(g);
 paintCardHighlight(g);
 paintCardText(g);
}

!

The above, original paintCard() method isn’t long, nor is it complicated. It paints a card
image, checks a flag to see if it must paint a card highlight, and then paints text onto the card.
Painting the card highlight and card text are performed by the methods,
paintCardHighlight() and paintCardText(). But the code that paints the card image lives
not in a separate method but in the paintCard() method itself. So? Well, consider the
refactored version of paintCard(). I can look at the refactored version and know what it does
in 2 seconds, while I have to spend a few brain cycles to figure out what the previous version
does. Trivial difference? No, not when you consider how much simpler an entire system is when
it consists of many composed methods, like paintCard().

So what was the smell that led to this refactoring? Code at different levels: raw code mixed
with higher-level code. When the method contains code at the same levels, it is easier to read and
understand. As the guidelines in the mechanics section say, above, Composed Methods tend to
have code at the same level.
 Implementing this refactoring was incredibly easy. I did Extract Method [Fowler] as follows:

private void paintCard(Graphics g) {

paintCardImage(g);
if (highlight)

paintCardHighlight(g);
paintCardText(g);

}

private void paintCardImage(Graphics g) {
Image image = null;
if (card.getType().equals("Problem")) {

image = explanations.getGameUI().problem;
} else if (card.getType().equals("Solution")) {

image = explanations.getGameUI().solution;
} else if (card.getType().equals("Value")) {

image = explanations.getGameUI().value;
}
g.drawImage(image,0,0,explanations.getGameUI());

}

 To finish this refactoring, I took the sole conditional statement in the method (if
(highlight)…) and pushed it down into the paintCardHightlight() method. Why? I

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 74 of 87

wanted the reader to simply see three steps: paint image, highlight image and paint card text. The
detail of whether or not we do highlight the card isn’t important to me – the reader can find that
out if they look. But if that confuses other programmers, I’d be happy to see the method
renamed to paintCardHighlighIfNecessary(g) or something similar.

private void paintCard(Graphics g) {

paintCardImage(g);
paintCardHighlight(g);
paintCardText(g);

}

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 75 of 87

Separate Versions with Adapters *

You’re code must handle different versions of a
component, library, API or other entity

Write Adapters for each version

 you need to support

!

QuerySD51

-sdLogin: SDLogin
-sdSession: SDSession

+login(...);
#createQuery: SDQuery

QuerySD52

-sdLoginSession: SDLoginSession
-configFileName: String

+QuerySD52(configFileName: String)
+login(...);
#createQuery: SDQuery

AbstractQuery

#sdQuery: SDQuery
+doQuery()
#createQuery() : SDQuery

1
<<Interface>>

Query

+doQuery()
+login(...)

Client

Query

-sdQuery: SDQuery
-sdLoginSession: SDLoginSession
-sdLogin: SDLogin
-sdSession: SDSession
-sd52: boolean

+login(...)
+login(...)
+doQuery()

 One login() method is
 for SuperDatabase 5.1,
 the other is for 5.2

 Here are a mix of
 instance variables
 specfic to SuperDatabase
 versions 5.1 & 5.2

 void doQuery() ...
 if (sd52)
 ...
 else
 ...

1
Client

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 76 of 87

Motivation

While software must often support multiple versions of a component, library or API, code

that handles these versions doesn’t have to be a confusing mess. And yet, I routinely encounter
code that attempts to handle multiple versions of something by overloading classes with version-
specific state variables, constructors and methods. Accompanying such code are comments like
“this is for version X – please delete this code when we move to version Y!” Sure, like that’s
ever gonna happen. Most programmers won’t delete the version X code for fear that something
they don’t know about still relies on it. So the comments don’t get deleted and many versions
supported by the code remain in the code.

Now consider an alternative: for each version of something you need to support, create a
separate class. The class name could even include the version number of what it supports, to be
really explicit about what it does. We call such classes Adapters [GoF]. Adapters implement a
common interface and are responsible for functioning correctly with one (and usually only one)
version of some code. Adapters make it easy for client code to swap in support for one library or
API version, or another. And programmers routinely rely on runtime information to configure
their programs with the correct Adapter.

 I refactor to Adapters fairly often. I like Adapters because they let me decide how I want to
communicate with other people’s code. In a fast-changing world, Adapters help me stay
insulated from the highly useful but rapidly changing APIs, such as those springing eternally
from the open-source world.

In several of the refactorings in this catalog, I assert the importance of not refactoring to a
pattern too quickly in order to avoid overengineering. There must be a genuine need to refactor
to a pattern, such as an overabundance of conditional logic, code bloat, duplication or
unnecessary complexity. However, in the case of code that handles multiple versions of a
component, library, API, etc., I often find compelling reasons to refactor to Adapters early, since
not doing so can lead to a propagation of conditional or version-dependent logic throughout a
system. So, while I’m not suggesting you adapt too early, be on guard for any complexity or
propagating conditionality or maintanance issues accruing from code written to handle multiple
versions of something. Adapt early and often so that it’s easy to use or phase out various versions
of code.

Communication Duplication Simplicity
A class that mixes together
version-specific state variables,
constructors and methods
doesn’t effectively communicate
how each version is different or
similar. Communicate version
differences by isolating the
differences in separate Adapter
classes. Communicate how
versions are similar by making
each Adapter implement a
common interface – either by
subclassing an abstract class,
implementing the same interface
or a combination thereof.

When each version of a
component, library, API, etc.,
isn’t isolated in its own Adapter,
but is instead accessed directly
or through a single class, there
tends to be the same repeating
chunks of conditional logic that
make version-specific calls to
code. Such duplication bloats a
class and makes the code
harder to follow.

When a class is responsible for
functioning correctly with several
versions of some other code, it is
rarely simple. Version-specfic
code tends to bloat the single
class and leads to conditional
logic in the client code that uses
it. Adapters provide a simple way
to isolate versions and give
clients a simple interface to
every version.

Mechanics

There are different ways to go about this refactoring, depending on what your code looks like

before you begin. For example, if you have a class that uses a lot of conditional logic to handle
multiple versions of something, it’s likely that your can create Adapters for each version by
repeatedly applying Replace Conditional with Polymorphism (255) [Fowler]. If you have a case
like that shown in the code sketch – in which a single class supports multiple versions of

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 77 of 87

something by containing version-specific variables and methods, you’ll refactor to Adapter using
a slightly different approach. I’ll outline the mechanics for this latter scenario.

1. Identify the overburdened class (we’ll call this class, “V”).

2. Apply Extract Subclass (330) [Fowler] or Extract Class (149) [Fowler] for a single
version of the multiple versions supported by V. Copy or move all instance variables and
methods used exclusively for that version into the new class.

To do this, you may need to make some private members of V public or protected. It may
also be necessary to initialize some instance variables via a constructor in your new
class, which will necessitate updates to callers of the new constructor.

3. Compile and test that your new class works as expected.

4. Repeat steps 2 –3 until there is no more version-specific code in V.

5. Remove any duplication found in the new classes, by applying refactorings like Pull Up

Method (322) [Fowler] and Form Template Method (345) [Fowler].

6. Compile and test.

Example

The code we’ll refactor in this example, which was depicted in the code sketch above, is
based on real-world code that handles queries to a database using a third party library. To protect
the innocent, I’ve renamed that library “SD,” which stands for SuperDatabase.

1. We begin by identifying a class that is overburdened with support for multiple versions of
SuperDatabase. This class, called Query, provides support for SuperDatabase versions 5.1 and
5.2 , which means it is already an Adapter to the SuperDatabase code. It just happens to be an
Adapter that is adapting too much.

In the code listing below, notice the version-specific instance variables, duplicate login()
methods and conditional code in doQuery():

public class Query . . .

private SDLogin sdLogin; // needed for SD version 5.1
private SDSession sdSession; // needed for SD version 5.1
private SDLoginSession sdLoginSession; // needed for SD version 5.2
private boolean sd52; // tells if we're running under SD 5.2
private SDQuery sdQuery; // this is needed for SD versions 5.1 & 5.2

// this is a login for SD 5.1
// NOTE: remove this when we convert all aplications to 5.2
public void login(String server, String user, String password) throws QueryException {

sd52 = false;
try {

sdSession = sdLogin.loginSession(server, user, password);
} catch (SDLoginFailedException lfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Login failure\n" + lfe, lfe);

} catch (SDSocketInitFailedException ife) {
throw new QueryException(QueryException.LOGIN_FAILED,

"Socket fail\n" + ife, ife);
}

}

// 5.2 login
public void login(String server, String user, String password, String
sdConfigFileName) throws QueryException {

sd52 = true;

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 78 of 87

sdLoginSession = new SDLoginSession(sdConfigFileName, false);
try {

sdLoginSession.loginSession(server, user, password);
} catch (SDLoginFailedException lfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Login failure\n" + lfe, lfe);

} catch (SDSocketInitFailedException ife) {
throw new QueryException(QueryException.LOGIN_FAILED,

"Socket fail\n" + ife, ife);
} catch (SDNotFoundException nfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Not found exception\n" + nfe, nfe);

}
}

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();
if (sd52)

sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
else

sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

2. Because Query doesn’t already have subclasses, I decide to apply Extract Subclass (330)
[Fowler] to isolate code that handles SuperDatabase 5.1 queries. My first step is to define the
subclass and create a constructor for it:

class QuerySD51 extends Query {

public QuerySD51() {
super();

}
}

Next, I find all calls to the constructor of Query and, where appropriate, change the code to call
the QuerySD51 constructor. For example, I find the following:

public void loginToDatabase(String db, String user, String password)…

query = new Query();
try {

if (usingSDVersion52()) {
query.login(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2

} else {
query.login(db, user, password); // Login to SD 5.1

}
…

} catch(QueryException qe)…

And change this to:

public void loginToDatabase(String db, String user, String password)…

try {
if (usingSDVersion52()) {

query = new Query();
query.login(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2

} else {
query = new QuerySD51();
query.login(db, user, password); // Login to SD 5.1

}
…

} catch(QueryException qe) {

Next, I apply Push Down Method (328) [Fowler] and Push Down Field (329) [Fowler] to outfit
QuerySD51 with the methods and instance variables it needs. During this step, I have to be
careful to consider the clients that are make calls to public Query methods, for if I move a public
method like login() from Query to a QuerySD51, the caller will not be able to call the public
method unless its type is changed to QuerySD51. Since I don’t want to make such changes to

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 79 of 87

client code, I proceed cautiously, sometimes copying and modifying public methods instead of
completely removing them from Query. While I do this, I generate duplicate code, but that
doesn’t bother me now - I’ll get rid of the duplication in step 5.

class Query…

private SDLogin sdLogin;
private SDSession sdSession;
protected SDQuery sdQuery;

// this is a login for SD 5.1
public void login(String server, String user, String password) throws QueryException {

// I make this a do-nothing method
}

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();
if (sd52)
sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
else

sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

class QuerySD51 {

private SDLogin sdLogin;
private SDSession sdSession;

public void login(String server, String user, String password) throws QueryException {
sd52 = false;
try {

sdSession = sdLogin.loginSession(server, user, password);
} catch (SDLoginFailedException lfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Login failure\n" + lfe, lfe);

} catch (SDSocketInitFailedException ife) {
throw new QueryException(QueryException.LOGIN_FAILED,

"Socket fail\n" + ife, ife);
}

}

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();
if (sd52)

sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
else
sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}
}

3. I compile and test that QuerySD51 works. No problems.

4. Next, I perform steps 2 and 3 to create QuerySD52. Along the way, I can make the Query
class abstract, along with the doQuery() method. Here’s what I have now:

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 80 of 87

QuerySD51

-sdLogin: SDLogin
-sdSession: SDSession
+login(...)
+doQuery()

QuerySD52

-sdLoginSession: SDLoginSession
-configFileName: String
+login(...)
+doQuery()

Query

#sdQuery: SDQuery
+doQuery()
+login(...)
+login(...)

Query is now free of version-specific code, but it is not free of duplicate code.

5. I now go on a mission to remove duplication. I quickly find some in the two implementations
of doQuery():

abstract class Query…

public abstract void doQuery() throws QueryException;

class QuerySD51…

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();

sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

class QuerySD52…

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();

sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

Each of the above methods simply initializes the sdQuery instance in a different way. This
means that I can Pull Up Method (322) [Fowler] to remove doQuery() from both subclasses,
and apply Form Template Method (345) [Fowler] on Query’s doQuery(), such that it calls a
Factory Method [GoF] to obtain the properly initialized sdQuery instance:

public abstract class Query …

protected abstract SDQuery createQuery(); // a Factory Method [GoF]

public void doQuery() throws QueryException { // a Template Method [GoF]
if (sdQuery != null)

sdQuery.clearResultSet();
sdQuery = createQuery(); // call to the Factory Method
executeQuery();

}

class QuerySD51…

protected SDQuery createQuery() {
return sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);

}

class QuerySD52…

protected SDQuery createQuery() {

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 81 of 87

return sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
}

After compiling and testing the changes, I now face a more obvious duplication problem: Query
still declares public method for the SD 5.1 & 5.2 login() methods, even though they don’t do
anything anymore (i.e. the real login work is handled by the subclasses). The signatures for these
two login() method are identical, except for 1 parameter:

// SD 5.1 login
public void login(String server, String user, String password) throws QueryException …

// SD 5.2 login
public void login(String server, String user,

String password, String sdConfigFileName) throws QueryException …

I decide to make the login() signatures the same, by simply supplying QuerySD52 with the
sdConfigFileName information via its constructor:

class QuerySD52 …

private String sdConfigFileName;
public QuerySD52(String sdConfigFileName) {

super();
this.sdConfigFileName = sdConfigFileName;

}

Now there is one abstract login() method on Query:

abstract class Query …

public abstract void login(String server, String user,
String password) throws QueryException …

And client code is updated as follows:

public void loginToDatabase(String db, String user, String password)…

if (usingSDVersion52())
query = new QuerySD52(getSD52ConfigFileName());

else
query = new QuerySD51();

try {
query.login(db, user, password);
…

} catch(QueryException qe)…

I’m now nearly done. Since Query is an abstract class, I decide to rename it AbstractQuery,
which communicates more about its nature. But making that name change necessitates changing
client code to declare variables of type AbstractQuery instead of Query. Since I don’t want to
do that, I apply Extract Interface (341) [Fowler] on AbstractQuery to obtain a Query interface
that AbstractQuery can implement:

interface Query {

public void login(String server, String user, String password) throws QueryException;
public void doQuery() throws QueryException;

}

abstract class AbstractQuery implements Query …

public abstract void login(String server, String user,
String password) throws QueryException …

Now, subclasses of AbstractQuery implement login(), while AbstractQuery doesn’t even
need to declare the login() method, since it is an abstract class.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 82 of 87

6. I compile and test and everything works as planned. Each version of SuperDatabase is now
fully adapted. The code is smaller and treats each version in a more uniform way, all of which
makes it easier to

• see similarities and differences between the versions
• remove support for older, unused versions
• add support for newer versions

Adapting Legacy Systems

Organization X has an extremely sophisticated system which brings in most of their income,
but which happens to be written in about 2 million lines of COBOL, little of which was ever
refactored over a decade of development. Sound familiar? Systems like this are usually hard to
extend because they were never refactored. And as a result, organizations that maintain such
systems can’t easily add new features to them, which makes them less competitiveness, which
can ultimately put them out of business.

What to do? One popular approach is to use Adapters to model new views of the legacy
system. Client code talks to the Adapters, which in turn talk to the legacy code. Over time, teams
rewrite entire sytstems by simply writing new implementations for each Adapter. The process
goes like this:

• Identify a subsystem of your legacy system
• Write Adapters for that subsystem
• Write new client programs that rely on calls to the Adapters
• Create versions of each Adapter using newer technologies
• Test that the newer and older Adapters function identically
• Update client code to use the new Adapters
• Repeat for the next subsystem

This is an example of applying Separate Versions with Adapter, only it is performed across

an entire system or subsystem, so the mechanics are a bit different.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 83 of 87

Adapt Interface

Your class implements an interface but only provides
code for some of the interface’s methods.

Move the implemented methods to an Adapter

of the interface and make the Adapter
accessible from a Creation Method.

public class CardComponent extends Container implements MouseMotionListener ...
 public CardComponent(Card card,Explanations explanations) {
 ...
 addMouseMotionListener(this);
 }
 public void mouseDragged(MouseEvent e) {
 e.consume();
 dragPos.x = e.getX();
 dragPos.y = e.getY();
 setLocation(getLocation().x+e.getX()-currPos.x,

 getLocation().y+e.getY()-currPos.y);
 repaint();
 }
 public void mouseMoved(MouseEvent e) {
 }

public class CardComponent extends Container ...
 public CardComponent(Card card,Explanations explanations) {
 ...
 addMouseMotionListener(createMouseMotionAdapter());
 }
 private MouseMotionAdapter createMouseMotionAdapter() {
 return new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 e.consume();
 dragPos.x = e.getX();
 dragPos.y = e.getY();
 setLocation(getLocation().x+e.getX()-currPos.x,
 getLocation().y+e.getY()-currPos.y);
 repaint();
 }
 };
 }

!

Motivation

Empty methods in concrete classes bother me. I often find that they’re there because a class
needs to satisfy a contract by implementing an interface, but only really needs code for some of
the interface’s methods. The rest of the methods get declared, but remain empty: they were added
to satisfy a compiler rule. I find that these empty methods add to the heftiness of a class’s
interface (i.e. it’s public methods), falsely advertise behavior (I’m a class that can, among other
things, do X(), Y() and Z() – only I really only provide code for X()), and forces me to do work
(like declaring empty methods) that I’d rather not do.

The Adapter pattern provides a nice way to refactor this kind of code. By implementing
empty methods for every method defined by an interface, the Adapter lets me subclass it to
supply just the code I need. In Java, I don’t even have to formally declare an Adapter subclass: I
can just create an anonymous inner Adapter class and supply a reference to it from a Creation
Method.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 84 of 87

Communication Duplication Simplicity
Empty methods on a class don’t
communicate very much at all.
Either someone forgot to delete
the empty method, or it is just
there because an interface
forces you to have it there. It is
far better to communicate only
what you actually implement,
and an Adapter can make this
feasible.

If more than one of your classes
partially implements an interface,
you’ll have numerous empty
methods in your classes. You
can remove this duplication by
letting each of the classes work
with an Adapter which handles
the empty method declarations.

It is always simpler to supply
less code than more. This
refactoring gives you a way to
cut down on the number of
methods your classes declare.
In addition, when used to adapt
multiple interfaces, it can provide
a nice way to partition methods
in each of their respective
adapters.

Mechanics

1. If you don’t already have an adapter for the interface (which we’ll call A), create a class

that implements the interface and provides do-nothing behavior. Then write a Creation
Method that will return a reference to an instance of your Adapter (which we’ll call
AdapterInstance).

2. Delete every empty method in your class that’s solely there because your class

implements A.

3. For those methods specified by A for which you have code, move each to your
AdapterInstance.

4. Remove code declaring that your class implements A.

5. Supply the AdapterInstance to clients who need it.

Example

We’ll use the example from the code sketch above. In this case we have a class called
CardComponent that extends the JDK Component class and implements the JDK’s
MouseMotionListener interface. However, it only implements one of the two methods
declared by the MouseMotionListener interface. So our task here is to replace a partially
implemented interface with an Adapter.

1. The first step involves writing a Creation Method for our AdapterInstance. If we don’t have
an AdapterInstance, we need to create one using the refactoring, Adapt Interface. In this case, the
JDK already supplies us with an adapter for the MouseMotionListener interface. It’s called
MouseMotionAdapter. So we create the following new method on the CardComponent class,
using Java’s handy anonymous inner class capability:

private MouseMotionAdapter createMouseMotionAdapter() {

return new MouseMotionAdapter() {
};

}

2. Next, we delete the empty method(s) that CardComponent declared because it implemented
MouseMotionListener. In this case, it implemented mouseDragged(), but did not implement
mouseMoved().

public void mouseMoved(MouseEvent e) {}

3. We’re now ready to move the mouseDragged() method from CardComponent to our
instance of the MouseMotionAdapter:

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 85 of 87

private MouseMotionAdapter createMouseMotionAdapter() {

return new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,

getLocation().y+e.getY()-currPos.y);
repaint();

}
};

}

4. Now we can remove the implements MouseMotionListener from CardComponent.

public class CardComponent extends Container implements MouseMotionListener {

5. Finally, we must supply the new adapter instance to clients that need it. In this case, we must
look at the constructor. It has code that looks like this:

public CardComponent() {

…
addMouseMotionListener(this);

}

This needs to be changed to call our new, private, Creation Method:

public CardComponent() {
…
addMouseMotionListener(createMouseMotionAdapter());

}

Now we test. Unfortunately, since this is mouse related code, I don’t have automated unit tests.
So I resort to some simple manual testing and confirm that everything is ok.

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 86 of 87

 References

[Beck]
Beck, Kent. Smalltalk Best Practice Patterns. Upper Saddle River, N.J.: Prentice Hall, 1997.

[Bloch]
Bloch, Joshua. Effective Java. Addison-Wesley, 2001.

[Fowler]
Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[GOF]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusable Object Oriented Software. Reading, Mass.: Addison-Wesley, 1995.

[JUnit]
Kent Beck and Erich Gamma. JUnit Testing Framework. Available on the Web
(http://www.junit.org).

Refactoring To Patterns, Copyright © 2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 87 of 87

Conclusion

Stay tuned for more refactorings. This work is only the beginning of a larger work on this subject.
I welcome your thoughts and feedback. If you are interested in seeing the latest copies of this
work, please visit http://industriallogic.com/xp/refactoring/

Acknowledgements

I’d like to thank my fantastic wife, Tracy, for her loving support and encouragement and the great
food she brings by when I’m caught up in writing.

Eric Evans has contributed more than any one else to making this work what it is today. I want to
thank him for his continued support, thoughtful conversations, great ideas and feedback.

I’d also like to the thank the following people:

• Robert Hirshfeld, for helping clarify the Decorator mechanics section.

• Martin Fowler for inspiration and encouragement, for giving me the advice that I once
gave him (i.e. use code sketches at the beginning of each refactoring) and for numerous
helpful suggestions and ideas.

• Kent Beck for his reviews and suggestions.

• John Vlissides for his reviews and suggestions.

• Ralph Johnson, Brian Foote, Brian Marick, Don Roberts, John Brant and others from the
University of Illinois.

• Somik Raha – for many great pairing sessions, refactoring ideas and some poor code he
once wrote when he was tired which provided great refactoring material.

• Many thanks to the following folks who provided excellent suggestions: Rob Mee, Jeff
Grigg, Kaoru Hosokawa, Don Hinton, Andrew Swan, Erik Meade, Ted Young.

